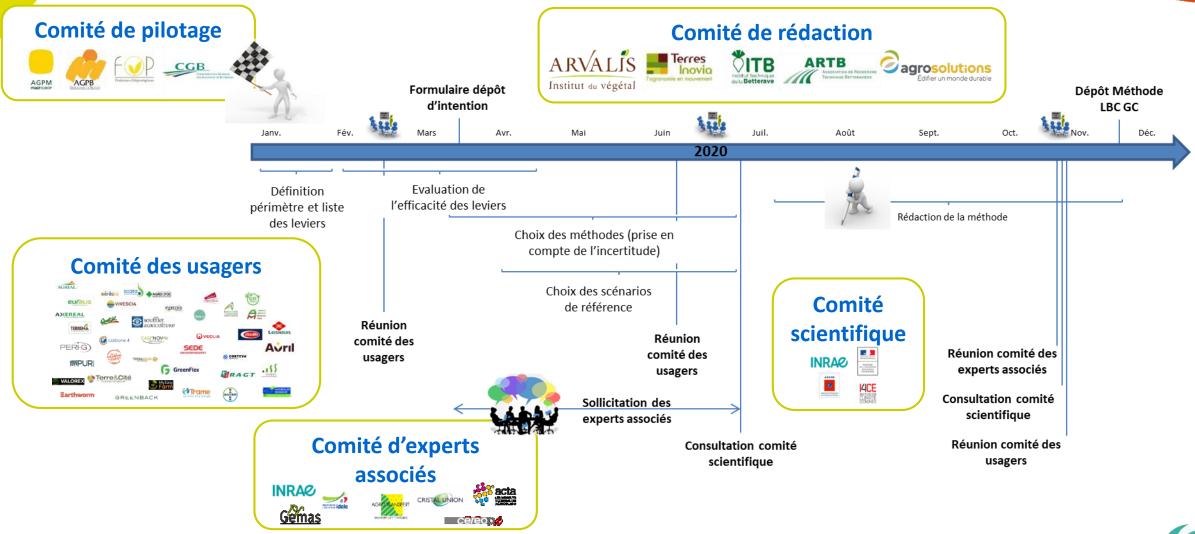
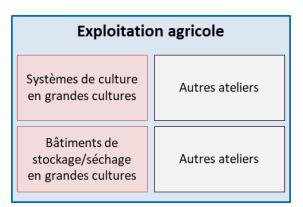
L'exemple du Label Bas-Carbone Grandes Cultures

Baptiste Soenen, Arvalis-Institut du Végétal



b.soenen@arvalis.fr


Mise en place d'un consortium

Principe de fonctionnement de la méthode LBC GC

Périmètre

+ RE aval (optionnel)

Si la **référence est spécifique**, elle doit se construire à l'échelle de l'exploitation en se basant sur les 3 dernières années

Si la **référence est générique**, elle doit se construire à l'échelle de la région en se basant sur les statistiques locales disponibles

Grain de définition de la référence

Système de Culture (SdC) =

Contexte pédoclimatique

Straté cultur

Stratégie culturale

X

Conduite culturale

Un impératif : des méthodes robustes et opérationnelles

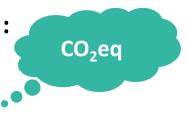
Philosophie des travaux menés avec les experts :

- La robustesse scientifique des méthodes proposées est une condition nécessaire mais pas suffisante : prioriser des méthodes opérationnelles, matures et facilement déployables.
- Prioriser de méthodes fonctionnant avec des données aisément collectables, afin de faciliter le déploiement opérationnel

Traduction dans les choix méthodologiques retenus :

Lorsque cela était pertinent, plusieurs options possibles ont été proposées concernant les méthodes à utiliser et les données d'entrée de ces méthodes

Les rabais proposés ont ensuite été déterminés en évaluant l'incertitude des différentes options proposées



Les méthodes retenues

Principe général pour les émissions de GES :

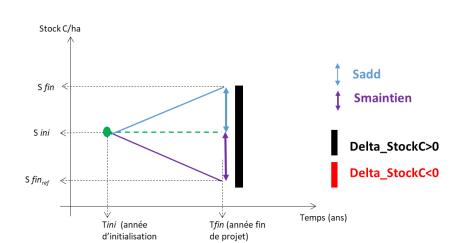
utilisation des références utilisées dans les analyses de cycle de vie (ACV)

Utilisation de références nationales et

IPCC 2019, OMINEA 2020, GESTIM+, ACV

MAFOR, Hénault et al. 2020....

$$RE_{\acute{e}missions} = RE_{fertilisation} + RE_{combustibles} + RE_{s\acute{e}chage\ stockage}$$


$$RE_{fertilisation} \ = \ \sum_{i=1}^{n} \sum_{k=1}^{p} (Intensit\acute{e}_ferti_ref_i - Intensit\acute{e}_ferti_Projet_{i,k} \) * Surf_{i,k}$$

Raisonnement basé sur le calcul des intensités par unité de surface (pour les SdC) et par quantité stockée/séchée (pour les bâtiments de stockage séchage)

$$RE_{s\acute{e}chage\ ferme} = \sum_{j=1}^{m} \left[\sum_{k=1}^{p} \left[\left(\text{Intensit\'e s\'echage}_{\text{ref }j} * \text{FE_\'energie}_{\text{ref }} * \text{tonnage s\'ech\'e}_{j} \left(k \right) \right) - \left(\text{Conso s\'echage}_{\text{projet }j} \left(k \right) * \text{FE_\'energie}_{\text{projet}} \right] \right]$$

Principe général pour le stockage de carbone dans les sols : utilisation des modèles de simulation du stock de carbone dans le sol (AMG, STICS, AqYield)

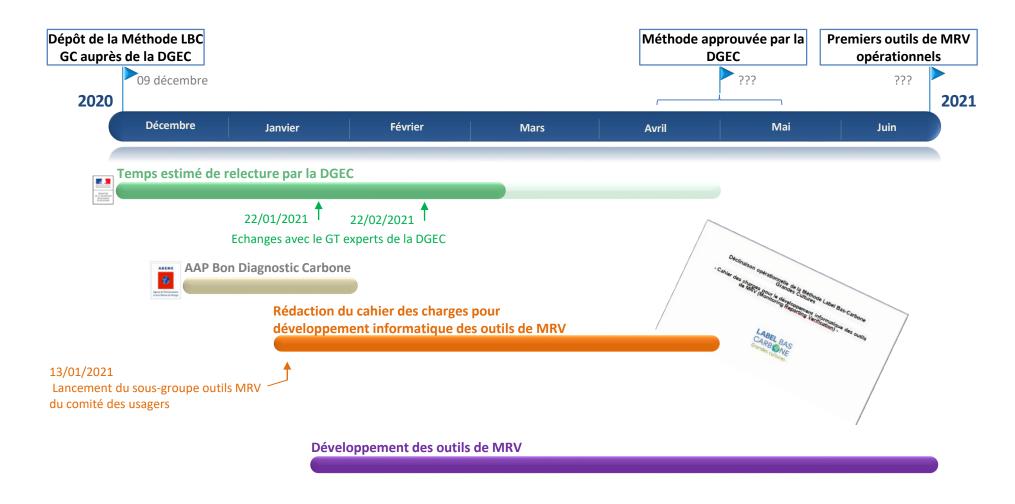
projet)

Des rabais proportionnels aux incertitudes

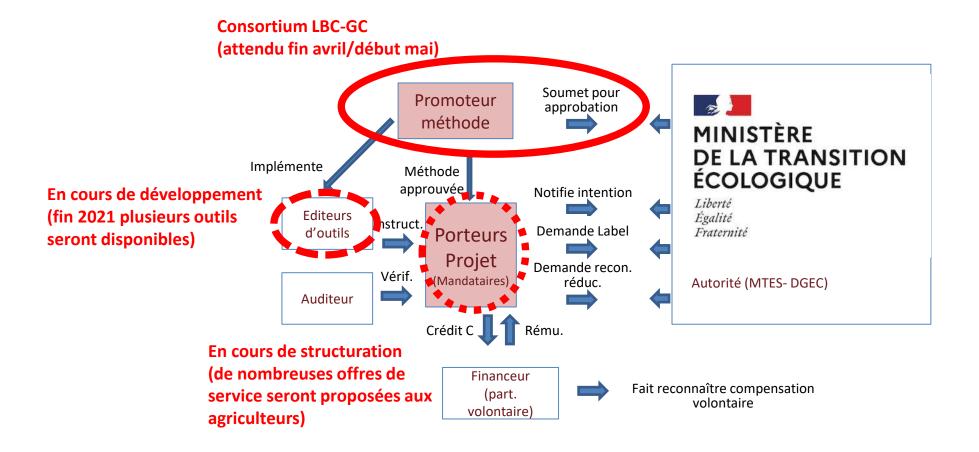
Exemple du calcul du rabais lié à l'incertitude des données d'entrée des modèles de stockages de carbone du sol

Niveau de précision de la donnée

Effet des incertitudes sur la différence de stock de C à 5 ans (Yogo et al. 2020)


Paramètres ou variables d'entrées	Mesures In Situ	Simulations	Utilisations de données moyennes	Niveau de rabais	
Pluviométrie Température	Station météo avec mesures en continue		Données météo des outils, à minima échelle départementale	0	
Stock de carbone initial	Analyses de sol en début de projet	Si analyses de sol antérieures au projet (dans la limite de 5 ans), simulation à partir de la date d'échantillonnage de sol pour obtenir le stock de C à l'initialisation du projet	Bases de données sols	+ ++	
Autres données sol : pH, ratio C/N Autres données sol : argiles, CaCO ₃	Analyses de sol en début de projet Analyses de sol en début de projet ou antérieure au projet		Bases de données sols	Prise en compte recommandations Favoriser les analy et mesures in situ	
Biomasse des cultures intermédiaires et des cultures principales	Mesures de biomasse (prélèvement, photos 57°, télédétection)	Simulation production biomasse	Moyennes régionales		
Quantité de carbone des MAFOR et sa stabilité (K1_MAFOR)	Quantités épandus Composition : analyse des produits épandus		Quantités épandus Composition : bases de données		

Prise en compte recommandations Favoriser les analyses


Déploiement à venir

Tout un écosystème qui devra se mettre en place

