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• Advances in proximal hyperspectral sens-
ing of abiotic plant stress are discussed.

• A total of 182 articles published from
2019 to 2022 are reviewed in detail.

• Stressors at leaf and canopy scales are clas-
sified into seven categories.

• Combining proximal and airborne sensing
has potential as a future research area.
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Recent attempts, advances and challenges, as well as future perspectives regarding the application of proximal
hyperspectral sensing (where sensors are placed within 10 m above plants, either on land-based platforms or in con-
trolled environments) to assess plant abiotic stresses have been critically reviewed. Abiotic stresses, caused by either
physical or chemical reasons such as nutrient deficiency, drought, salinity, heavy metals, herbicides, extreme temper-
atures, and so on, may be more damaging than biotic stresses (affected by infectious agents such as bacteria, fungi, in-
sects, etc.) on crop yields. The proximal hyperspectral sensing provides images at a sub-millimeter spatial resolution for
doing an in-depth study of plant physiology and thus offers a global view of the plant's status and allows for monitoring
spatio-temporal variations from large geographical areas reliably and economically. The literature update has been
based on 362 research papers in this field, published from 2010, most of which are from four years ago and, in our
knowledge, it is the first paper that provides a comprehensive review of the applications of the technique for the
detection of various types of abiotic stresses in plants.
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1. Introduction

Abiotic plant stress and the use of hyperspectral technologies to evaluate
the reactions in plants have been reviewed, paying special attention to the
advantages of early detection of plant problems without damaging crops.
1.1. Stress-induced reactions in plants and their characterization using
hyperspectral techniques

Plant growth is typically influenced by adverse environmental condi-
tions, which means that plants are frequently faced with a series of chal-
lenges related to temperature, nutrition, water, chemicals, salinity, and
other factors. The physiological changes caused by these conditions have
a significant impact on plant growth, which has a detrimental effect on
agricultural production (Li et al., 2021c). Abiotic stresses, such as nutrient
deficiencies and water stress, can have a more serious impact on crop pro-
ductivity than diseases caused by biotic agents, some of which can reduce
crop yields by as much as 70 % (Payne and Kurouski, 2021). Furthermore,
plant damage may also adversely affect human health, such as through
heavy metal toxicity (Wang et al., 2018). There are various physiological
defense mechanisms that are developed in plants in response to adverse
abiotic conditions. Early detection of these mechanisms and the implemen-
tation of protective measures in conjunction with them could aid in reduc-
ing adverse effects (Sanaeifar et al., 2022a). Furthermore, a key component
of precision agriculture is the ability tomonitor plant health under extreme
environmental conditions in order to ensure healthy plant development. As
a result, comprehensive monitoring of the state of agricultural crops will
contribute to the early and accurate estimation of yield losses and the devel-
opment of disaster prevention strategies.

Other aspects of precision agriculture that require advanced techniques
to achieve success include the development of new varieties of plants as
well as selecting the best ones for certain conditions, such as drought or
soil salinity tolerance (Das et al., 2020; El-Hendawy et al., 2021a). Hence,
the development of phenotyping techniques that are quick, accurate, and
non-invasive is necessary for evaluating plant stress and breeding programs.

Advances in imaging technologies have gained significant attention in
recent years for the assessment of the effects of abiotic stress on plant char-
acteristics. The use of non-destructive imaging allows measurements to be
made over time, which may help in monitoring the resilience of crops to
stress (Mohd Asaari et al., 2018). Recently, hyperspectral sensing has
emerged as one of the most promising technologies for the assessment of
plant physiology, as well as their reactions to stress by combining spatial
3

and spectral information (Mertens et al., 2021). The two main types of
hyperspectral sensors are imaging sensors and non-imaging sensors
(Cheshkova, 2022; Traversari et al., 2021). In non-imaging sensors, average
reflectance is measured in an areawithout a spatialfield of view. The size of
the sampling area is also determined by several factors, including the field
of view and the distance to the target. There are currently a variety of spec-
trometers available on themarket. For instance, the ASD FieldSpec (Analyt-
ical Spectral Devices Inc., USA) is widely used in research studies to provide
detailed hyperspectral scans comparable to benchtop instruments in terms
of spectral range and resolution (Thomson et al., 2022). The majority of
these sensors are lightweight and portable, and do not require a great
deal of training to operate. As early signs of plant stress often appear in
plant tissue below 1 mm, non-imaging sensors lack the ability to identify
early signs of plant stress due to tissue spectrum averaging (Zhang et al.,
2020a). Hyperspectral imaging (HSI) sensors combine spatial and spectral
information by creating an individual spectrum profile for each pixel.
Hence, a three-dimensional array of data is created with two spatial dimen-
sions and one spectral dimension. In addition to imaging whole plants, HSI
can image individual leaves from the plants for the purposes of performing
quantitative or qualitative analyses. Using this approach, leaf and canopy
spectral signatures may be able to indicate changes in vegetation health
resulting from abiotic stress (Burnett et al., 2021). Detailed information is
contained in each plant pixel, including the chemical composition and
physiological conditions of the plant (Mishra et al., 2017). Under green-
house or field conditions, the plant reflectance spectrum can be used to
identify, quantify, and spatially present the effects of stress on plant growth
(Fallon et al., 2020). However, the development of methods allowing the
accurate monitoring of plant stress is not straightforward, as a number of ob-
stacles must be overcome before this technique can be successfully applied.
To address these challenges, it is crucial to understand the requirements for
phenotyping, data collection, and analysis, which may vary depending on
the conditions, the crop species, measured characteristics, and stage of
growth (Liu et al., 2020a). A thorough understanding of plant light interac-
tions, sensors, imaging platforms, and processing algorithms must be
acquired to ensure that plant phenotyping meets the required criteria.

The reflectance and absorption of light are strongly influenced by the
physiological and chemical characteristics of plants, which can change
under stress and cause changes in the reflectance spectrum. During the
measurement of plant growth, the near-infrared and visible spectral ranges
play an important role. Non-imaging hyperspectral sensors have a wide
electromagnetic spectrum range (350–2500 nm), whereas imaging sensors
typically cover a limited range,mainly focusing on VIS-NIR (400–1000 nm)
and sometimes containing short-wave infrared (1000–2500 nm). The use of
these wavelengths enables hyperspectral technologies to observe changes
in leaf pigment (400–700 nm), cellular composition (700-1300 nm), and
water content (1300-2500 nm) in plants (Lowe et al., 2017; Zhang et al.,
2020a). Fig. 1 provides a scheme of the main relationship between light re-
flectance and plant stress, paying special attention to the plant components
which can affect the interactions with light. Considering that chlorophyll
plays a role in photosynthesis and acts as a light absorber, fluctuations in
chlorophyll levels due to stress may lead to changes in the interaction
way between plants and light. As a result of stressful conditions, chlorophyll
may be depleted, which can be detected in a broad spectrum as low reflec-
tion at 530-630 nm, and increased reflection at 700 nm. In addition to chlo-
rophyll, plant pigments, such as carotenes and xanthophylls, also contribute
to the plant's ability to reflect light (Zubler and Yoon, 2020). Also, caroten-
oids and anthocyanin help plants in defending themselves from a variety of
environmental factors (Mishra et al., 2017). Furthermore, physical charac-
teristics of leaves such as tissue morphology, cell wall characteristics, and
epidermal thickness may change under stress, influencing the leaf's spectral
characteristics. It has been observed that the reflectance around 960 nm is
affected by cell elasticity, which decreases when the plant is subjected to
drought (Zubler and Yoon, 2020).Moreover, leaf stomata can adversely im-
pact leaf properties under stressful conditions, which are essential for the
maintenance of leafmoisture and the regulation of gas exchange. As a result
of stomatal closure, leaf temperature can rise, and it can be seen in the



Fig. 1. Plant tissue interacts with incoming radiation for hyperspectral sensing of abiotic stresses. (a) cross-sectional view of a typical leaf and interaction between light and
leaf, (b) a brief overview of plant spectral-sensitive regions in response to various stresses (Zhu et al., 2021), (c) characteristic spectral reflectance curve of leaf.
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infrared wavelengths (Sawinski et al., 2013). Different cell wall compo-
nents, proteins and carbohydrates of leaves can also change under various
stress conditions and significantly impact their reflectance characteristics.
For example, salt stress may adversely impact photosynthetic processes
directly through the closing and limiting of mesophyll stomata, or indi-
rectly through changes in cellular metabolism (Sytar et al., 2017). In addi-
tion to damaging plant cells, salt stress also causes ion toxicity. Therefore,
the blue and red regions were also chosen as indicators of salt stress
(Fig. 1b). These wavelengths are useful in characterizations of chlorophyll
content, photosynthetic activity, and cellular architecture (Zhu et al.,
2021). Moreover, since the light at infrared wavelengths is absorbed by
water molecules, leaf water content can also affect the spectral response,
and severe drought can change the structure of leaf mesophyll, which
affects reflectance at near infrared wavelengths (Lowe et al., 2017).

1.2. Proximal sensing

The use of hyperspectral technology for close-range assessment of vari-
ous characteristics of plants has become increasingly widespread in recent
years. Although this technique is very promising, it is still facing some
major challenges that are mainly related to the technical challenges associ-
ated with setup, data processing, and sample type. These technical
challenges related to proximal sensing of plants have been discussed in a
number of review papers (Liu et al., 2020b; Mishra et al., 2020, 2017).
There are several hardware configurations behind hyperspectral technol-
ogy and thus, measurements can be made in various ways. However, a crit-
ical component of a stress monitoring system is the sensor's ability to detect
abiotic stress-induced changes in the spectral response of plants. Typically,
the visible spectrum is the most important range for assessing plant stress,
4

but other parts of the spectrum can also be affected (Zubler and Yoon,
2020). It is possible to apply the same sensor in an indoor or outdoor set-
ting, and it may be installed at various distances from the sample, thereby
providing different sensing scales. For the purpose of proximal sensing,
both portable and fixed spectrometers can be used to capture spectra at
leaf and canopy scales in laboratory and outdoor environments. Using prox-
imal imaging, leaf stress characteristics such as pigment variations and the
spatial distribution of leaf stress in a canopy may be examined. A common
practice is to use proximal sensing for calibrating stress assessmentmethods
that are designed to be incorporated into applications using airborne or
satellite imaging spectroscopy (Laroche-Pinel et al., 2021). To avoid envi-
ronmental interference, a non-imaging sensor (leaf-clip) that is equipped
with an internal light is the ideal choice for measurements. The use of prox-
imal hyperspectral technologies at canopy scales makes it possible to estab-
lish a link between leaf and large-scale measurements.

A variety of acquisition areas can be used to study canopy reflectance on
a range of scales, from a single plant to multiple plants (Lassalle, 2021). Re-
search studies often involve the exposure of plants to stressors in controlled
environments that are reproducible and can be used to evaluate the inten-
sity and duration of exposure to a single or multiple stressors (Mirzaei
et al., 2019; Nguyen et al., 2020a; Tirado et al., 2021). Several stress expo-
sure situations cannot be replicated in an experimental setting, whether the
stressor is hard to manipulate or the species are particularly challenging
(Cui et al., 2019; Grieco et al., 2022a). Therefore, measurements of leaf or
canopy reflectance in the field may be conducted to adapt controlled envi-
ronmentmethods or to obtain calibration data to test airborne and satellite-
based imaging procedures (Laroche-Pinel et al., 2021). In many field appli-
cations, sensors mounted on land-based devices can achieve a high spatial
resolution, allowing them tomeasure plant parameters at the leaf or canopy
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scale, with spatial resolutions of up to one centimeter (Grieco et al., 2022a;
Jiang et al., 2020; Zhu et al., 2021). An overview of different setups used for
proximal hyperspectral sensing of abiotic stress from 2019 to 2022 can be
found in Fig. 2.

1.3. Data processing

Reflectance differences are able to reveal physiological characteristics
of plants aswell as assess a genotype's response to abiotic stressors using ap-
propriate spectral analysis. While hyperspectral data are not always proc-
essed according to a standard procedure, in general, it comprises of four
steps: (i) preprocessing, (ii) segmentation, (iii) variable extraction, and
(iv) data analysis (Liu et al., 2020b). An appropriate data preprocessing
method can improve spatial contrast, reduce interference signals, highlight
objects, and thereby facilitates subsequent analysis. Using image segmenta-
tion, certain features of an image can be identified, including the main sub-
ject and the surrounding area. It can be employed for practical agricultural
purposes to minimize errors caused by background noise. In particular,
cluster-basedmethods, such as k-means, provide useful information regard-
ing stressed areas of a plant (Mishra et al., 2021). The complete reflectance
spectrummay be employed to assess plant health and can be integrated di-
rectly into machine learning algorithms. Since reflectance measurements
are typically conducted at many wavelengths, a considerable amount of in-
formation may be redundant within a particular range of wavelengths,
complicating the identification of optimal wavelengths to employ for mon-
itoring a particular stressor. Therefore, spectral signatures must often be
Fig. 2.Various proximal hyperspectral sensor setups for monitoring abiotic stress in plan
2019), (c) (Pan et al., 2022), (d) (Ryckewaert et al., 2022), (e) (Żelazny and Lukáš, 20
(i) (Grieco et al., 2022b), (j) (Jiang et al., 2020), (k) (Singh et al., 2020), (l) (Ma et al., 2
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converted into abstract variables, such as principal components, to reduce
dimensionality or select features. Many of the proximal HSI studies have
successfully applied spectral reflectance indices (SRIs) that are directly re-
lated to plant characteristics, such as chlorophyll and water content, and
are then used for subsequent analyses to assess plant status (El-Hendawy
et al., 2019c; Ma et al., 2021a; Wang et al., 2020a). The SRIs are formed
by combining a number of wavelengths corresponding to certain physiolog-
ical properties that serve to describe abiotic stress reactions in plants
(Żelazny and Lukáš, 2020). Reflectance-physiology relationships shown in
Fig. 3 enable the rapid phenotyping of plants by computing SRIs based on
their physiological characteristics and using predictive models developed
by PLS (Mertens et al., 2021). Based on index-based linear regression
models, the SRIs were assessed for drought detection and predicting phys-
iological responses. The indices are dependent on WC, photosynthetic effi-
ciency, pigment content, and red/NIR reflectance, and their models were
compared to PLS ones to determine which one is better at monitoring
drought effects. Because PLS uses all available wavelengths, there could
be additional noise produced by some wavelengths. Therefore, SRI-based
models with comparable accuracy to PLS models could be useful for
predicting physiological traits based on hyperspectral data.

An effective method of monitoring plant stress involves evaluating the
plant's spectral signature to help identify the level of stress at which the
plant has been exposed. Conventionally, this evaluation was derived from
a graphical analysis of leaf and canopy spectra. Later, data analysis is di-
vided according to three general approaches: statistical analysis, prediction
models, and classification models (Lassalle, 2021). In statistical analysis,
ts under laboratory and field conditions. (a) personal photograph, (b) (Moroni et al.,
20), (f) (Bloem et al., 2020), (g) (Zhang et al., 2019b), (h) (Weksler et al., 2021),
021a).



Fig. 3. Heatmap of R2 values (a) and scaled RMSE values (b) to compare the prediction accuracy of SRI and PLS-based models (Mertens et al., 2021).
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reflectancemetrics are used to identify stressed and healthy plants (Weksler
et al., 2020). A lack of relevancy between this method and newly developed
reflectancemeasurements used to assess plant stress results in its inapplica-
bility outside the study context, which severely limits its applicability. Pre-
diction models that combine one or more input variables can calculate a
continuous output variable, including the stressor directly or the biological
or physiological symptoms associated with plant stress (Kumagai et al.,
2022). Furthermore, classification models aim to develop a procedure
that maps input data to categorical outputs which can be used to assess
plant health (Zhang et al., 2019c). Inversion of radiative transfer models
is common in remote sensing applications to extract key physiological pa-
rameters from spectra (Jin et al., 2019; Proctor et al., 2021). A number of
characteristics, such as chlorophyll, moisture, and canopy structure, are ob-
tained in models based on look-up tables or machine learning algorithms.
However, this model is not appropriate for proximal hyperspectral technol-
ogies due to its lack of adaptability to specific illumination issues (Mohd
Asaari et al., 2018).

According to our literature search, the most relevant review article is
the meta-review conducted by Lassalle et al. (2021). This paper reviews
the research works in which hyperspectral remote sensing was applied to
monitor natural and anthropogenic plant stressors, in the period of 1970
to 2020, mainly from a statistical perspective. The survey was conducted
using close-range and remote hyperspectral sensing approaches for study-
ing both abiotic and biotic stresses in plants, at leaf and canopy scales. How-
ever, our review focuses more deeply and in greater detail on only close-
range (proximal) hyperspectral sensing and all abiotic stresses. We also
6

discuss the ability of the hyperspectral technology to detect the abiotic
stresses, challenges, advantages, limitations, and so on, as well as interac-
tions between the spectral reflectance and the stresses in detail. Further-
more, there are a few other review papers available, however they are
not comprehensive enough to address all of the abiotic stresses that plants
face in the natural environment (Galieni et al., 2021; Liu et al., 2020b;
Mishra et al., 2020, 2017; Paulus and Mahlein, 2020). The studies provide
an overview of lighting correction, machine learning techniques, and
guidelines for applying hyperspectral imagery to plant phenotyping, from
satellites to ground-based platforms.

All the applications considered in this review were conducted from
2019 to 2022, in seven different areas related to abiotic stressors in plants:
nutrient deficiency, drought, salinity, heavy metal, herbicide, high and low
temperatures and other environmental stresses. A total of 340 articles were
published between 2010 and 2022, of which 182 articles were published in
the period between 2019 and 2022 (Fig. 4). The articles described the use
of proximal hyperspectral technologies for assessing abiotic stresses on
plants in laboratory and field experiments. The following sections address
applications of proximal hyperspectral technologies to each of the seven
categories of abiotic stress, and in addition, full details of the studies from
2019 to 2022 are presented in Tables 1–7 for each stressor. The tables pro-
vide detailed information regarding each study, including study scale,
stress type, plant, hyperspectral sensor, spectral range, sensor distance
from target, measurement environment, data preprocessing, modeling
approaches, and optimal performance. The modeling approaches column
includes a list of different models used for prediction or classification, as



Fig. 4. Distribution of the number of publications in the field of monitoring plant abiotic stressors using proximal hyperspectral remote sensing during the years (a) 2019-
2022 (b) 2010-2022.
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well as techniques for selecting variables, spectral reflectance indices, and
statistics if such approaches were employed.

2. Applications of proximal hyperspectral sensing

It has been demonstrated that leaf-scale hyperspectral measurements
are less sensitive to external conditions such as lighting, climate, and
humidity when compared to canopy-scale measurements. Basic laboratory
research can benefit from this approach, since it can provide insight into the
slight changes that occur in plants during stressful conditions. However,
measurements made at the leaf level are not suited to practical use in the
field due to their low throughput. By acquiring proximal hyperspectral im-
ages at canopy scale in thefield, high spatial resolution can be achieved and
measurement throughput is significantly increased. Aswell as its high accu-
racy, data collected this way is less likely to be adversely influenced by
environmental factors due to its close proximity to the plant being studied.
However, due to its limited capacity for detecting vegetation, it is insuffi-
cient to detect plant stress on a large scale (Pérez-Bueno et al., 2022). It is
possible to identify different aspects of stress using different hyperspectral
measurement scales. Specifically, leaf scale measurements reflect the effect
on leaf biochemical characteristics. On the other hand, canopy scale studies
can also be used to assess the effect on the structure of plants. Thus, leaf
scale spectral indices may not be highly effective in detecting canopy scales
7

due to the inherent bias associated with their transferrable characteristics
(Li et al., 2019b).

In general, multiscale spectral indices would be more appropriate for
practical purposes, as compared to indices based on a single scale. Stress-
sensitive wavelengths at different scales have common characteristics,
and are mostly found in the green, red, and near infrared wavelength
ranges. As an example, changes in the structure and moisture content of
leaves are associated with a reduction in reflection in the NIR region,
which is also regarded as a reliable predictor of changes to canopy structure
(Franke and Menz, 2007). The following stressors in plants have been
considered: 1. nutrient deficiency, 2. drought, 3. salinity, 4. heavy metal,
5. herbicide, 6. high and low temperatures and 7. other environmental
stresses. Several cases of leaf and canopy scale measurements under abiotic
stress are discussed in the following sections.

2.1. Nutrient deficiency

Nitrogen poses the greatest restriction on crop growth since it has a di-
rect correlation with photosynthesis and overall yields. Phosphorus, potas-
sium, and micronutrients are also vital to the growth of plants and become
deficient when plants are unable to properly absorb one or more of the
aforementioned compounds (Lassalle, 2021). Nutrient deficiency may
affect old or young leaves, resulting in limited growth of the plant and



Table 1
Research studies performed from 2019 to 2022 to detect nutrient deficiency using proximal hyperspectral technologies.

Scale Stress type Plant HSI sensor Spectral
range (nm)

Distance
to target
(m)

Measurement
environment

Data preprocessing Modeling approaches Optimal
performance

Refs

Leaf Nitrogen Rice Not mentioned 400-1000 0 (leaf
clip)

Field Not mentioned DWMD, PCA, SPA,
IRIV
Prediction: PLS, ELM,
GA-ELM

Rp
2 = 0.683 (Yu et al., 2020)

Nitrogen Rice Fixed: ImSpector V10E (Spectral Imaging
Ltd., Oulu, Finland)

400–1000 Not
mentioned

Controlled
environment

– Visualization
Classification: CNN

Accuracy
ratep =
99.56 %

(Zhu et al., 2022)

Potassium Rice Portable: FieldSpec Pro (ASD, Boulder, CO,
USA)

350–2500 0 (leaf
clip)

Field 1st Der SRIs, correlation
analysis
Prediction: Linear
regression

Rp
2 = 0.77 (Lu et al., 2020)

Phosphorus Rice NH-7 (EBA JAPAN Co., Ltd.); SIS-I (EBA
JAPAN Co., Ltd.)

500-1650 Not
mentioned

Controlled
environment,
Field

SG, 1st Der-SG, 2nd Der-SG,
SNV-SG, SNV- 1st Der-SG,
SNV-2nd Der-SG

Visualization
Prediction: PLS, RF

Rp
2 = 0.75 (Takehisa et al., 2022)

Phosphorus Cucumber Fixed: ImSpector NI7E, Spectral Imaging
Ltd., Oulu Finland

870–1770 Not
mentioned

Controlled
environment

– PCA, ICA
Classification: PCA,
HCA, KNN, ANN

Accuracy
ratep = 97.5
%

(Shi et al., 2022)

Various
nutrients

Orange Portable: FieldSpec 2 (ASD, USA) 380 -1020 Not
mentioned

Field 1st Der Relief-F
Prediction: DT, RF,
KNN, ANN, SVM, RR,
Lasso Regression

Rp
2 =

0.912-0.727
(Osco et al., 2020)

Potassium Peach Portable: HSC-2 (Senop, Helsinki, FI) 500-900 0.3 Controlled
environment

SG-1st Der, SG-2nd Der, MSC, SNV PCA
Prediction: PLS

Rp
2 = 0.81 (Abenina et al., 2022)

Nitrogen Olive Portable: FieldSpec 4 (ASD, USA) 350- 2500 Not
mentioned

Field SG, SNV, 1st Der, 1st Der-SNV, 1st
Der-SNV-SG, 2nd Der, 2nd
Der-SNV, 2nd Der-SNV-SG

SRIs
Prediction: Linear
regression, PLS

Rv
2 =

0.71-0.56
(Rubio-Delgado et al., 2021)

Nitrogen Lettuce Fixed: Specim FX-10 (Specim, Spectral
Imaging Ltd., Oulu, Finland)

400–1000 Not
mentioned

Controlled
environment

1st Der SRIs
Prediction: linear
regression, PLS, PCR

Rv
2 = 0.81

-0.97
(Eshkabilov et al., 2021)

Nitrogen,
drought

Spinach Portable: CompactSpec dual-channel diode
array spectrometer

305–2205 0.01 Field 2nd Der-SG SRIs, CARS
Prediction: PLS

Rv
2 = 0.47 (Rubo and Zinkernagel, 2022)

Magnesium Cucumber Fixed: ImSpector V10E (Spectral Imaging
Ltd., Oulu, Finland)

400–900 0.18 Controlled
environment

– Visualization
Prediction: PLS, iPLS,
SA-iPLS

Rp
2 = 0.894 (Shi et al., 2019)

Nitrogen Cucumber Fixed: FSR, Fanavaran Physics Noor Co.,
Tehran, Iran

400–1000 1 Controlled
environment

– ANN-SA
Prediction: ANN-PSO,
CNN, PLS

Rp
2 = 0.986 (Sabzi et al., 2021a)

Nitrogen Cucumber Fixed: FSR, Fanavaran Physics Noor Co.,
Tehran, Iran

400 -1100 1 Controlled
environment

SNV-SG ANN-ABC
Classification:
ANN-ICA

Accuracy
ratep =
96.11 %

(Sabzi et al., 2021b)

Nitrogen Cucumber Fixed: FSR, Fanavaran Physics Noor Co.,
Tehran, Iran

400–1100 1 Controlled
environment

MSC, SG CNN Rp
2 = 0.968 (Pourdarbani et al., 2021)

Nitrogen,
magnesium,
potassium

Cucumber Fixed: FSR, Fanavaran Physics Noor Co.,
Tehran, Iran

400 -1100 1 Controlled
environment

SNV Visualization
Prediction: PLS, iPLS,
SiPLS, and GA-iPLS
Classification: KNN

Rp = 0.909
Accuracy
ratep =
96.67 %

(Shi et al., 2021)

Nitrogen Maize Portable: LeafSpec, developed by the
Purdue Phenotyping Lab group

450–900 0 (leaf
clip)

Controlled
environment,
Field

– SRIs, Visualization
Prediction: AdaBoost,
Logistic Regression,
PLS, RF

Rp
2 =

0.771-0.880
(Ma et al., 2020; Wang et al.,
2020c)

Nitrogen,
phosphorus,
potassium,
drought

Maize Portable: FieldSpec 4 (ASD, USA) 350- 2500 0 (leaf
clip)

Field SG SRIs, Correlation
analysis
Prediction: PLS, SVM

R2 > 0.85 (Ge et al., 2019)
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Nitrogen,
phosphorus,
potassium,
drought

Maize Portable: FieldSpec 2 (ASD, USA) 350- 2500 0 (leaf
clip)

Controlled
environment,
Field

SG-1st Der Prediction: PLS, SVM,
RF, KNN, ANN,
GDboost

Rv
2 = 0.78 (Singh et al., 2022b)

Phosphorus Maize Portable: FieldSpec 3 (ASD, USA) 450-1000 0 (leaf
clip)

Field – PCA
Classification: LDA

Accuracy
ratep = 85
%

(de Oliveira et al., 2022)

Nitrogen Wheat Portable: FieldSpec 2 (ASD, USA) 400- 2400 0 (leaf
clip)

Field SG-1st Der Prediction: SVM, RF,
KNN, ANN, GDboost

R2 > 0.85 (Singh et al., 2022a)

Nitrogen,
phosphorus,
potassium

Woody plants,
shrubs and
grasses,

Portable: FieldSpec 2 (ASD, USA) 350 -1000 0 (leaf
clip)

Field 1st Der, Nor SRIs, correlation
analysis
Prediction: Linear
regression

Rp
2 =

0.5–0.8
(Peng et al., 2020)

Nitrogen, Iron Avocado Fixed: SVC HR-1024I (Spectra Vista Corp.,
USA)

400–970 0.50 Controlled
environment

Nor Correlation analysis
Classification: FDA

Accuracy
ratep = 100
%

(Hariharan et al., 2019)

Nitrogen,
potassium,
magnesium

Grapevine Fixed: Pika XC2 HS benchtop (Resonon Inc.,
Bozeman MT, USA),

380–1000 0.57 Controlled
environment

1st Der SRIs,
Classification: SVM

Accuracy
ratep =
93.19 %

(Debnath et al., 2021)

Various
macronutrient

Oil palm Portable: FieldSpec 4 (ASD, USA) 400-2500 0 (leaf
clip)

Field – CFS
Classification: NB, LMT

Accuracy
ratep =
76.13-100
%

(Amirruddin et al., 2020)

Nitrogen Tea Portable: FieldSpec 4 (ASD, USA) 400-2500 0 (leaf
clip)

Controlled
environment,
Field

1st Der, SNV, MSC, DT, CR GA, sensitivity analysis
Prediction: RF, SVM,
Cubist, SGB, KELM

Rp
2 < 0.85 (Yamashita et al., 2020)

Leaf &
Canopy

Nitrogen Wheat Portable: FieldSpec 3 (ASD, USA); Fixed:
WIWAM (FX10+ SWIR), Labscanner
(FX10e) (Specim, Oulu, Finland)

350-2500 0 (leaf
clip) and
1.4

Controlled
environment

SG SRIs
Prediction: PLS

Rv
2 =

0.75-0.86
(Liu et al., 2020c)

Canopy Potassium Pepper Fixed: Specim FX-10 (Specim, Spectral
Imaging Ltd., Oulu, Finland)

400–1000 2 Controlled
environment

SG -SNV SRIs
Correlation analysis

– (Weksler et al., 2020)

Various
nutrients

Barley Fixed: HySpex SWIR 384, Norsk Elektro
Optikk, Norway

1000-2500 1 Field SNV, Nor Prediction: PLS, MLP,
RBF

Rv
2 = 0.9 (Grieco et al., 2022b)

Various
macronutrient

Bok choy,
spinach

Fixed: OCI Imager (OCI-UAV-D1000),
BaySpec Inc

460-983 1.5 Controlled
environment

1st Der Correlation analysis
Classification: LDA

Accuracy
ratep = 80
%

(Nguyen et al., 2020b)

Phosphorus Sugar beet,
celery,
strawberry

Fixed: ImSpector V10E and N25E 2/3″ 400–1000,
1000–2500

0.20 Controlled
environment

2nd Der- SG CFS
Classification: ANN,
SVM, NB, RF

Accuracy
ratev =
45-100 %

(Siedliska et al., 2021)

Various
nutrients

Strawberry Fixed: Resonon Pika XC2 (Resonon Inc.,
USA)

400-1000 Not
mentioned

Controlled
environment

– Classification: Deep
learning,

Accuracy
rate = 100
%

(Yang, 2022)

Nitrogen Wheat Portable: FieldSpec Pro (ASD, Boulder, CO,
USA)

350–1075 1 Field – SRIs, correlation
analysis
Prediction: Linear
regression

Rv
2 = 0.861 (Song et al., 2021)

Nitrogen,
drought

Maize Portable: FieldSpec 2 (ASD, USA) 395–1004 0.1-0.6 Field – SRIs, PCA, correlation
analysis
Prediction: MLR

Rv
2 = 0.57 (Sellami et al., 2022)

Potassium,
salinity

Pepper Fixed: FX10 (Specim, Spectral Imaging Ltd.,
Oulu, Finland)

400–1000 Not
mentioned

Controlled
environment

SNV-SG-1st Der Classification:
XGBoost, SVM
Prediction: XGBoost

Accuracy
ratev = 80
%
Rv
2 = 0.75

(Weksler et al., 2021)

Nitrogen,
phosphorous,
potassium

Winter oilseed
rape

Portable: PSR-3500 (Spectral Evolution,
Lawrence, MA, USA); Portable: FieldSpec
Pro (ASD, Boulder, CO, USA)

400-2300 1 Field – RF score
Classification: RF,
SVM, ANN

Accuracy
ratev =
80.76 %

(Liu et al., 2020d)

Nitrogen,
phosphorous,

Radiata pine Fixed: FX10 (Specim, Spectral Imaging Ltd.,
Oulu, Finland)

400–1000 2 Controlled
environment

SG-1st Der SRIs, correlation
analysis, PROSAIL
(Radiative transfer), RF

Rv
2 = 0.80 (Watt et al., 2020a, 2020b)

(continued on next page)
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branching. Plant leaves become discolored and disfigured due to inade-
quate nutrition, whereas spectral reflectance can serve as an indicator
that allows identification of nutritional status. The effects of nutritional de-
ficiencies typically have an impact in the visible region owing to pigmenta-
tion changes and the yellowing of leaves leads to higher reflectance in the
green-red region (Li et al., 2020). Moreover, it has been demonstrated
that necrosis associated with various nutrient deficiencies increases reflec-
tance, while in non-necrotic areas, the reflectance decreases (Lassalle,
2021). So, the use of hyperspectral images can be an effective method for
determining crop nutrition in situ, allowing for consideration of its spatial
and temporal variability. Studies conducted using proximal hyperspectral
technologies to detect nutrient deficiencies are presented in Table 1.

2.1.1. Leaf scale
Rice production systems require a reliable method of nitrogen testing in

order to ensure the proper and timely application of fertilizers. HSI was
used by Yu et al. (2020) to overcome rice's nitrogen deficiency to achieve
precise fertilization without affecting yield. The spectral reflectance and
nitrogen content data were collected to determine the standard nitrogen
content and reflectance in order to maximize yields. Data were reduced in
dimensionality and they were used to establish regression models to evalu-
ate the nitrogen content in japonica rice. It was determined that the GA-
ELM predictionmodel treated by the DWMDdemonstrated superior perfor-
mance with the R2 of training and validation sets higher than 0.68.

There is a similarity between the symptoms that occur during the early
growth of leaves under phosphorus deficiency and those that affect healthy
leaves during the early stages of senescence. As a result, it is difficult to
detect them visually or through computer imaging. In a study performed
by Shi et al. (2022), spectral images of cucumber leaves were captured,
and a set of P deficiency characteristic signals were identified from the
NIR. In this work, PCA and ICA methods were used to extract information
from HSI images of leaves and it was found that ICA was effective in iden-
tifying water-stained plaques that result from P deficiencies. Also, PCA and
HCA confirmed that the invisible symptoms were related to an early P defi-
ciency through similarities in spectra between different regions of leaves.
Based on that, it was possible to diagnose P deficiency 15 to 24 days in
advance compared with other methods.

Analysis of macro- and micronutrients in situ is essential for the proper
management of citrus plants, as an optimal nutrient content is the key to
maximize profitability. Based on hyperspectral analysis of Valencia orange
leaves, Osco et al. (2020) proposed a machine learning approach for quan-
tifying macro- and micronutrient composition (N, P, K, Mg, S, Cu, Fe, Mn,
and Zn). Several algorithms were employed, and the random forest model
showed the best performance. For the purpose of determining responsible
wavelengths, the Relief-F algorithm was used. The results demonstrated
good prediction (R2) for nutrients between 0.912 and 0.727.

For olive trees growing in semi-arid environments, nitrogen is one of the
major limiting factors, so its measurement is necessary to determine the
most appropriate fertilization method. The spectral properties of olive
leaveswere analyzed by Rubio-Delgado et al. (2021) to estimate their nutri-
tional status using hyperspectral data. The vegetation indices, consisting of
multiple wavelengths, as well as PLS models, were built and evaluated
in terms of their prediction performance, while the reflectance curves
were preprocessed to reduce noise. It was determined that wavelengths cor-
responding to N variation could be found in the visible and short-wave in-
frared wavelength ranges, representing chlorophyll a and b as well as
nitrogen. The PLS models were more accurate than vegetation indices,
although they were subject to higher levels of error due to the noise incor-
porated with the hyperspectral data.

There is a close relationship between leaf nitrogen content and the chlo-
rophyll level of green leaves. The purpose of the study was to investigate
variations in hyperspectral data to quantify nitrogen and chlorophyll con-
centrations (Fig. 5) (Yamashita et al., 2020). It was done to identify the
nitrogen content of leaves in tea plants, which are large feeders and require
large quantities of nitrogen to grow. Various machine learning and prepro-
cessing methods were used to develop regression models. By using leaf



Table 2
Research studies performed from 2019 to 2022 to detect drought using proximal hyperspectral technologies.

Scale Plant HSI sensor Spectral
range (nm)

Distance to
target (m)

Measurement
environment

Data
preprocessing

Modeling
approaches

Optimal
performance

Refs

Leaf Soybean Portable: FieldSpec 3
(ASD, USA)

350- 2500 0 (leaf clip) Field – Stepwise procedure
Classification: PCA, LDA

Accuracy ratep =
50-100 %

(Crusiol et al., 2021)

Lemon Portable: PSR-3500
(Spectral Evolution, Lawrence, MA, USA)

350- 2500 0 (leaf clip) Controlled
environment

– SRIs
Prediction: SVM, RF, GDboost,
Adaboost

Rp
2 = 0.88-0.92 (Zhou et al., 2021c)

Vine Portable: FieldSpec 4
(ASD, Malvern Panalytical Ltd., Malver, UK)

350- 2500 0 (leaf clip) Field – SRIs
Prediction: Extra Trees, Linear
regression

Rp
2 = 0.62 (Laroche-Pinel et al.,

2021)

Six agronomic
species

Portable: PSR-3500
(Spectral Evolution, Lawrence, MA, USA)

350- 2500 0 (leaf clip) Controlled
environment,
Field

– VIP
Prediction: PLS
Classification: LDA, PLS-DA

Rp
2 = 0.49-0.87

Accuracy ratep =
66 %

(Burnett et al., 2021)

Rice Portable: FieldSpec 3
(ASD, USA)

350–2500 0 (leaf clip) Controlled
environment

– SRIs
Correlation analysis Prediction:
PLS-MLR,PLS-ANN,SVM, RF, PLS,
ANN

Rv
2 = 0.97 (Krishna et al., 2019)

Lettuce Portable: FieldSpec Pro
(ASD, Boulder, CO, USA)

325–1075 Not
mentioned

Controlled
environment

– Correlation analysis
Classification: ANN, DT, SVM, RF,
NB, Logistic Regression

Accuracy ratep =
93 %

(Osco et al., 2019)

Soybean Portable: FieldSpec 3
(ASD, USA)

325–1075 0.120 Controlled
environment

1st Der SRIs
Correlation analysis Prediction:
Linear regression

Rp =
0.736-0.860

(Kovar et al., 2019)

Soybean Portable: FieldSpec 3
(ASD, USA)

350–2500 0 (leaf clip) Controlled
environment

– PCA
Classification: LDA

Accuracy ratep =
84-100 %

(Guilherme Teixeira
Crusiol et al., 2021)

Radiata pine Portable: FieldSpec 3
(ASD, USA)

400–2500 0.009–0.01 Controlled
environment

– SRIs
Correlation analysis Prediction:
Linear regression

Rp
2 = 0.86-0.90 (Watt et al., 2021)

Tea Fixed: Gaia field pro-v10, Finland 400–1100 0.38 Controlled
environment

MSC-1st Der-SG,
MSC-2nd
Der-SG,

SPA, UVE, CARS
Prediction: SVM, RF, PLS

Rp = 0.81-0.95 (Chen et al., 2021)

Maize Not mentioned 862.9-1704 Not
mentioned

Controlled
environment

– PCA, KLD
Prediction: SVM-PSO

Rp = 0.768 (Gao et al., 2019a)

Wild rocket Portable SPECIM IQ camera (Spectral Imaging Ltd.,
Oulu, FI)

400–1000 Not
mentioned

Controlled
environment

– SRIs, Visualization
Classification: ANN

Accuracy ratep =
73.3 %

(Navarro et al., 2022)

Leaf &
Canopy

Maize Portable: FieldSpec 4
(ASD, USA)

350–2500 0 (leaf clip)
and 1.4

Field – SRIs, Correlation analysis,
PROSPECT (Radiative transfer),

– (Li et al., 2021d)

Oak Fixed: SVC HR-1024I
(Spectra Vista Corp., USA)

400–2400 Not
mentioned,
0.40

Controlled
environment

– Classification: PLS-DA Accuracy ratep =
77.9 %

(Fallon et al., 2020)

Haloxylon
ammodendron

Portable: FieldSpec 4
(ASD, USA)

350-2500 0 (leaf clip)
and 1

Field 1st Der SCOPE (Radiative transfer), SRIs
Prediction: polynomial regression

Rv
2 = 0.96 (Jin et al., 2019)

Canopy Bromus inermis grass Fixed: Headwall Photonics VNIR A-Series, USA 400 -1000 0.45 Controlled
environment

1st Der SRIs
Classification: ANN, SVM, RF

Accuracy ratep =
100 %

(Dao et al., 2021)

Bromus inermis

grass
Fixed: Headwall Photonics VNIR A-Series, USA

400 -1000 0.50 Controlled
environment

– PROCOSINE, PROSPECT
(Radiative transfer), sensitivity
analysis

– (Proctor et al., 2021)

Arabidopsis thaliana Fixed: HySpex VNIR-1800 (Norsk Elektro Optikk, Oslo,
Norway)

407–997 1 Controlled
environment

SG-Nor-SNV PCA, deep learning, k-means – (Mishra et al., 2021)

Oak Fixed: Headwall Photonics, Fitchburg, MA, USA 545–1700 Not
mentioned

Controlled
environment

– SRIs
Prediction: Linear regression

Rp
2 = 0.66 (Mazis et al., 2020)

Soybean, Maize Fixed: Cubert UHD 185 camera (UHD; Cubert GmbH, Ulm,
Germany)

450- 950 2 Controlled
environment

SNV SRIs, VIP
Prediction: PLS

Rv
2 = 0.77–0.92 (Sobejano-Paz et al.,

2020)
Maize Fixed: ImSpector V10E and N25E (Spectral Imaging Ltd., Oulu,

Finland)
400–1000,
970–2500

1.5 Controlled
environment

– SRIs, VIP
Prediction: PLS

Rv
2 = 0.86-0.92 (Mertens et al., 2021)

Maize Fixed: MSV-500 (Middleton Spectral Vision Co., USA) 380–1017 2.3 Controlled – SRIs, Visualization – (Zhang et al., 2019b)

(continued on next page)
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Table 2 (continued)

Scale Plant HSI sensor Spectral
range (nm)

Distance to
target (m)

Measurement
environment

Data
preprocessing

Modeling
approaches

Optimal
performance

Refs

environment
Maize Fixed: MSV-500 (Middleton Spectral Vision Co., USA) 370–1030 Not

mentioned
Controlled
environment

MSC Prediction: CNN, PLS, SVM Rp
2 = 0.872 (Rehman et al., 2020)

Maize Fixed: ImSpector V10E (Spectral Imaging Ltd., Oulu, Finland) 400-1000 Not
mentioned

Controlled
environment

SNV SRIs – (Asaari et al., 2019)

Maize Portable: FieldSpec 3 (ASD, USA) 350–2500 1–1.3 Field – SRIs, Correlation analysis
Prediction: Linear regression

Rv
2 = 0.791 (Zhang and Zhou, 2019)

Maize Fixed: ImSpector V10E (Spectral Imaging Ltd., Oulu, Finland) 400–1000 1.2 Controlled
environment

SNV Visualization
Prediction: PLS, GPR, RR

R2 > 0.82 (Mohd Asaari et al., 2022)

Maize, sorghum Fixed: Headwall Nano-Hyperspec (VNIR) imager (Headwall
Photonics, Inc., Bolton, MA, USA)

400-1000 1.2 Controlled
environment

1st Der SRIs, PCA – (Manley et al., 2019)

Rice Portable: FieldSpec 3 (ASD, USA) 350–2500 0 (leaf clip) Field – SRIs
Prediction: PLS

Rv
2 = 0.71 (Krishna et al., 2021)

Wheat Portable: FieldSpec 3 (ASD, USA) 350–2500 1 Controlled
environment

– Correlation analysis, PLS, SPA
Prediction: MLR, SMLR

Rv
2 = 0.637 (Xie et al., 2020a)

Wheat Portable: FieldSpec Pro (ASD, Boulder, CO, USA) 350–2500 0.15 Controlled
environment

– SRIs – (Li et al., 2022b)

Peanut Portable: FieldSpec 2 (ASD, USA) 325-1075 Not
mentioned

Controlled
environment

– SRIs, Correlation analysis – (Chen et al., 2020)

Potato Fixed: 710 VP (Surface Optics Corp, San Diego, CA, USA) 400–1000 3 Controlled
environment

– Classification: RF, ANN, CNN,
SVM, XGB, AdaBoost

Accuracy ratep =
100 %

(Duarte-Carvajalino et al.,
2021)

Oilseed rape Fixed: Rikola, Senop, Oulu, Finland 503-903 0.70 Controlled
environment

SG, MSC SRIs, PCA – (Żelazny and Lukáš, 2020)

Grapevine Fixed: HySpex VNIR-1600 and SWIR-384 (Norsk Elektro
Optikk, Norway)

400-2500 Not
mentioned

Field SG, 2nd Der VIP Classification: PLS-DA, SVM Accuracy ratep =
97 %

(Zovko et al., 2019)

Grapevine Portable: FieldSpec 2 (ASD, USA) 325-1075 0.30 Field – SRIs
Classification: RF, BT, GPR,
VH-GPR

Accuracy ratep =
79- 100 %

(Pôças et al., 2020)

Grapevine Portable: SPECIM IQ camera (Spectral Imaging Ltd., Oulu, FI) 400-1000 1 Field – Prediction: PLS, SO-PLS Rp
2 = 0.699 (Ryckewaert et al., 2022)

Grapevine Fixed: Headwall Photonics VNIR A-Series, USA 372-1006 1.4 Field – SRIs
Classification: RF, ANN

Accuracy ratep =
73 %

(Thapa et al., 2022)

Tomato Fixed: HySpex VNIR-1600 and SWIR-384 (Norsk Elektro
Optikk, Norway)

400-2500 3 Controlled
environment

SG, 2nd Der VIP
Classification: PLS-DA, SVM

Accuracy ratep =
100 %

(Žibrat et al., 2019)

Three species of
Mediterranean
shrubland

Portable: FieldSpec 4 (ASD, USA) 350–2500 0.1 Field – SRIs, VIP, Correlation analysis
Classification: PLS-DA

– (Mevy et al., 2022)

Green roof plants Portable: FieldSpec 4 (ASD, USA) 350–2500 0.15 Controlled
environment

– SRIs – (Moroni et al., 2019)

Tall fescue Portable: PSR-1100F (Spectral Evolution, Lawrence, MA, USA);
Crop Circle ACS-430 (Holland Scientific, Inc., Lincoln, NE,
USA)

320-1100 0.46 Field – SRIs, Correlation analysis
Prediction: logistic regression

Rp = 0.79 (Badzmierowski et al.,
2019)
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Table 3
Research studies performed from 2019 to 2022 to detect salinity using proximal hyperspectral technologies.

Scale Plant HSI sensor Spectral
range
(nm)

Distance
to target
(m)

Measurement
environment

Data
preprocessing

Modeling approaches Optimal
performance

Refs

Leaf Rice Portable: GER 1500, Spectra Vista
Corp., Poughkeepsie, New York

282-1097 Not
mentioned

Field SG SRIs, PCA, PLS
Prediction: PLS, ELNET,
SVM, GPR, MARS, RF, XGB,
GAM, KNN

Rv =
0.823-0.934

(Das et al.,
2020)

Pomegranate Portable: FieldSpec 4 (ASD, USA) 400–2400 0 (leaf
clip)

Controlled
environment

– SRIs
Prediction: Linear regression
Classification: PLS-DA

Rv
2 =

0.61–0.79
Accuracy ratep
= 80-90 %

(Calzone
et al., 2021)

Lettuce Portable: SVC HR-1024I (Spectra
Vista Corp., USA)

350–2500 0 (leaf
clip)

Controlled
environment

– SRIs, VIP
Prediction: PLS
Classification: PCA+
PLS-DA

Rv
2 =

0.70–0.84
Accuracy ratep
= 0.33-0.91
%

(Cotrozzi and
Couture,
2020)

Tomato Fixed: Gaia Field-Pro-V10
microscopic

400–1000 Not
mentioned

Controlled
environment

SNV, Nor
MSC,
detrending,
SG

SPA, VISSA, VCPA
Prediction: PLS, PCR

Rv = 0.81 (Wu et al.,
2022)

Olive Portable: FieldSpec 3 (ASD, USA) 350–2500 0 (leaf
clip)

Controlled
environment

Nor-1nd Der-
SG

SRIs
Prediction: PCR, PLS
Classification: Correlation
analysis + LDA

Rv
2 = 0.938

Accuracy ratep
=
64.58-84.88 %

(Boshkovski
et al., 2022)

Barley Fixed: Hyperspec UV-VIS-line
scanner (Headwall Photonics,
Bolton, MA, USA)

240–500 0.40 Controlled
environment

– Comparison analysis with
non-imaging
UV-spectrometer

– (Brugger
et al., 2019)

Rosemary Portable: FieldSpec 4 (ASD, USA) 350–2500 Not
mentioned

Controlled
environment

– SRIs, Correlation analysis – (Atun et al.,
2020)

Canopy Wheat Fixed: Resonon Pika XC2 (Resonon
Inc., USA)

400–1000 10 Field SG SRIs, VIP-PLS-MIR
Prediction: linear, quadratic,
exponential models

Rp
2 ≥ 0.63 (Zhu et al.,

2021)

Spartina
alterniflora

Fixed: Headwall Photonics VNIR
E-Series, USA

400
-1000

Not
mentioned

Controlled
environment,
Field

SG, 1st Der,
2nd Der,

SRIs
Prediction: ELNET, stepwise
regression

Rv
2 =

0.74-0.99
(Goldsmith
et al., 2020)

Okra Fixed: ImSpector V10E (Spectral
Imaging Ltd., Oulu, Finland)

380–1030 0.24 Controlled
environment

– Deep learning
Prediction: PLS

Rv
2 =

0.588-0.835
(Feng et al.,
2020)

Wheat Portable: FieldSpec 4 (ASD, USA) 350–2500 1 Field – SRIs
Prediction: MLR

Rv
2 = 0.38-

0.79
(El-Hendawy
et al., 2021a)

Wheat Portable: FieldSpec Pro (ASD,
Boulder, CO, USA)

350–2500 0.80 Field – Correlation analysis, SRIs,
VIP
Prediction: PLS, MLR

Rv
2 ≥ 0.7 (El-Hendawy

et al., 2019d)

Wheat Portable: FieldSpec Pro (ASD,
Boulder, CO, USA)

350–2500 0.80 Field – Correlation analysis, SRIs
Prediction: PLS

Rv
2 =

0.63-0.98
(El-Hendawy
et al., 2019c)

Wheat Portable: FieldSpec Pro (ASD,
Boulder, CO, USA)

350–2500 0.80 Field – Correlation analysis, SRIs
Prediction: linear and
quadratic fitting models

Rv
2 =

0.50-0.93
(El-Hendawy
et al., 2019b)

Wheat Portable: FieldSpec 4 (ASD,
Boulder, CO, USA)

350–2500 0.80 Field – Correlation analysis, SRIs
Prediction: MLR

Rv
2 = 0.64-

0.85
(El-Hendawy
et al., 2021b)

Wheat Portable: FieldSpec 4 (ASD,
Boulder, CO, USA)

350–2500 0.80 Field – VIP
Prediction: PLS, MLR

Rv
2 =

0.43-0.95
(El-Hendawy
et al., 2019a)
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reflectance measurements from green and albino yellow leaves, data-based
sensitivity analysis revealed considerable differences in signal detected for
quantifying nitrogen and chlorophyll contents, particularly between 1325
and 1575 nm, indicating a nitrogen content-specific wavelength range.

2.1.2. Canopy scale
Monitoring plant physiological status throughout the day and taking

multiple images of plants are crucial aspects for understanding hourly var-
iations and effects. A moving hyperspectral camera was developed by
Weksler et al. (2020) in order to collect multiple measurements of the
greenhouse throughout the day, which are continuously tracked by physio-
logical sensors. This system provided insight into the correlation between
the spectral and physiological characteristics of potassium-treated pepper
plants. There were significant correlations between the spectra and mo-
mentary transpiration rates using three bands (523, 697, and 818 nm). Ob-
tained results indicate that the time of spectral measurements in relation to
the physiological condition of plants can provide important information,
which varies across plant types and needs to be considered when acquiring
remote sensing data.
13
The enrichment of plant nutrients has been a key aspect for public
health, and is of growing significance to the agricultural industry. To en-
hance agronomic properties, including nutrient concentration, 25wild bar-
ley accessions have been crossed with the elite cultivar to make HEB-25. A
study by Grieco et al. (2022b) investigated the potential of HSI for
predicting the concentration of micro and macronutrients in the leaves of
the HEB-25 plants collected at different stages of development. The aim
was to establish quantitative models to explain leaf nutrient uptake, as
well as plant physiology and yield characteristics, to demonstrate the rela-
tionship between them. In particular, the predictability of N, P, and K leaf
concentrations was high, and a R2 of 0.90, 0.75 and 0.89 was obtained, re-
spectively. In this way, plant breeders could assess nutrient concentrations
in large fields for purposes of selecting plants better adapted to enhance the
concentration of nutrients in harvested edible parts.

A novel night-based HSI system was developed by Nguyen et al.
(2020b) to assess leaf reflectance of bok choy and spinach under high, me-
dium, and low fertilization conditions. This study has identified spectral
bands where leaf reflectance can be used to accurately measure crop
response to fertilizers. Moreover, a strong relationship between leaf



Table 4
Research studies performed from 2019 to 2022 to detect heavy metal using proximal hyperspectral technologies.

Scale Stress type Plant HSI sensor Spectral range
(nm)

Distance
to target
(m)

Measurement
environment

Data preprocessing Modeling
approaches

Optimal performance Refs

Leaf Copper Chicory Portable: FieldSpec Pro (FR, ASD,
USA)

350-2500 0 (leaf
clip)

Controlled
environment

CWT SRIs, VIP
Prediction: P

Rv
2 = 0.848 (Lin et al., 2021)

Copper, lead Maize Fixed: SVC HR-1024I (Spectra Vista
Corp., USA)

350-2500 0.05 Controlled
environment

VMD PCA
Classificatio M

OAV = 0.75-1 (Li et al., 2021a)

Copper, lead Maize Fixed: SVC HR-1024I (Spectra Vista
Corp., USA)

350-2500 0.05 Controlled
environment

– Correlation sis,
visualization

– (Fu et al., 2020)

Copper, lead Maize Fixed: SVC HR-1024I (Spectra Vista
Corp., USA)

350-2500 0.05 Controlled
environment

CR, FOD SRIs
Classificatio

Accuracy ratep=
100 %

(Li et al., 2021b)

Copper Maize Fixed: SVC HR-1024I (Spectra Vista
Corp., USA)

350-2500 0.05 Controlled
environment

DFT, DWT Reflectance – (Wang et al., 2020d)

Cadmium Rice Fixed: ImSpector V10E (Spectral
Imaging Ltd., Oulu, Finland)

400-1000 0.27 Controlled
environment

– GA CARS, B
Prediction: P VM,
ELM

Rp = 0.943 (Shen et al., 2020)

Cadmium Rice Portable: UniSpec, PP systems,
Haverhill, MA, USA

300–1150 0 (leaf
clip)

Controlled
environment

1st Der Prediction: P Rv
2 = 0.873 (Zhou et al., 2019a)

Cadmium,
lead (leaf and
soil)

Rice Portable: UniSpec, PP systems,
Haverhill, MA, USA

310–1100 0 (leaf
clip)

Field 1st Der, 2nd Der SRIs
Prediction: P

Rv
2 = 0.592 (Zhou et al., 2019b)

Cadmium,
lead

Lettuce Fixed: ImSpector V10E (Spectral
Imaging Ltd., Oulu, Finland)

400.68–1001.61 0.45 Controlled
environment

SG WT, SCAE
Prediction: S

Rp
2 = 0.942 (Zhou et al., 2020a)

Cadmium Lettuce Fixed: ImSpector V10E (Spectral
Imaging Ltd., Oulu, Finland)

380–1030 0.45 Controlled
environment

SG, SG-SNV, SG-SNVD,
SG-1st, SG-2nd, SG-3rd,
SG-4th

SPA, PLS, SA
Prediction: S

Rp
2 = 0.949 (Xin et al., 2020)

Cadmium Lettuce Fixed: ImSpector V10E (Spectral
Imaging Ltd., Oulu, Finland)

431.05- 962.45 Not
mentioned

Controlled
environment

WT, 1st Der, 2nd Der PCA, IRIV, V
Classificatio M,
GOA-SVM

Accuracy ratep = 98.57 % (Zhou et al., 2019)

Cadmium Lettuce Fixed: ImSpector V10E (Spectral
Imaging Ltd., Oulu, Finland)

480-1010 Not
mentioned

Controlled
environment

– WT, PCA
Classificatio M,
CS-SVM

Accuracy ratep=
94.19 %

(Zhou et al., 2021b)

Cadmium Lettuce Fixed: ImSpector V10E (Spectral
Imaging Ltd., Oulu, Finland)

431–961 0.45 Controlled
environment

SG–SNV PSA
Prediction: P VM,
PSO-DBN

Rp
2 = 0.923 (Sun et al., 2019)

Cadmium Lettuce Fixed: ImSpector V10E (Spectral
Imaging Ltd., Oulu, Finland)

400-1000 Not
mentioned

Controlled
environment

SNV, 1st Der, 2nd Der,
1st Der-SNV, 2nd
Der-SNV

IRIV, WT
Prediction: S

Rp
2 = 0.884 (Zhou et al., 2021a)

Lead Lettuce Fixed: ImSpector V10E (Spectral
Imaging Ltd., Oulu, Finland)

478–978 Not
mentioned

Controlled
environment

– CARS
Classificatio
PLS-DA, SVM N

Accuracy ratep = 96.67 % (Sun et al., 2021)

Lead Lettuce Fixed: ImSpector V10E (Spectral
Imaging Ltd., Oulu, Finland)

480.46-1001.61 0.45 Controlled
environment

SNV, 1st Der, 2nd Der,
3rd Der, 4th Der

WT, MC, SA
Prediction: S

Rp
2 = 0.947 (Zhou et al., 2022c)

Lead Lettuce Fixed: ImSpector V10E (Spectral
Imaging Ltd., Oulu, Finland)

400.68-1001.61 Not
mentioned

Controlled
environment

SG, SNV, 1st Der, 2nd
Der,

WT, SAE
Prediction: S

Rp
2 = 0.959 (Zhou et al., 2020b)

Lead Tea Portable: FieldSpec 4 (ASD, USA) 350-2500 0 (leaf
clip)

Controlled
environment

– CFS, PLS, Co tion
analysis
Prediction: P BF
Classificatio A

Rp = 0.952
Accuracy rate = 91.67 %

(Sanaeifar et al., 2022a)

Lead Tea Portable: FieldSpec 4 (ASD, USA) 350-2500 0 (leaf
clip)

Controlled
environment

SNV, detrending, Nor,
MSC

SPA, CARS,
CARS-SPA,
Correlation sis
Prediction: P CR
Classificatio
PLS-DA

Rp = 0.931
Accuracy rate = 97.9 %

(Sanaeifar et al., 2022b)

Cadmium Tomato Fixed: ImSpector V10E (Spectral 431.05-962.45 Not Controlled OSC, SNV, SNV WT Rp
2 = 0.893 (Jun et al., 2019)
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Imaging Ltd., Oulu, Finland) mentioned environment detrending, 1st Der,
2nd Der

Prediction: SVM

Lead Oilseed rape Fixed: ImSpector V10E (Spectral
Imaging Ltd., Oulu, Finland)

400.68-1000.61 0.45 Controlled
environment

1st Der CARS, MRF
Prediction: SVM,
HHO-SVM

Rp
2 = 0.943 (Cao et al., 2021)

Zinc Oilseed rape Fixed: ImSpector V10E (Spectral
Imaging Ltd., Oulu, Finland)

431.04–962.45 0.4 Controlled
environment

MSC Deep learning, SPA,
VISSA
Prediction: SVM

Rp
2 = 0.957 (Fu et al., 2022)

Various heavy
metals

Peach Portable: FieldSpec 4 (ASD, USA) 350–2500 0.05–0.10 Field 1st Der SRIs
Prediction: Linear
regression

Rp
2 > 0.8 (Liu et al., 2021b)

Various heavy
metals

Grapevine Portable: FieldSpec3 (ASD, Inc.,
USA)

350–2500 Not
mentioned

Controlled
environment

Nor SRIs, PLS
Prediction: SVM,
Linear regression

Rp
2 = 0.56-0.86 (Mirzaei et al., 2019)

Cadmium Miscanthus
sacchariflorus

Fixed: ImSpector V10E (Spectral
Imaging Ltd., Oulu, Finland)

380–1030 0.263 Controlled
environment

WT SRIs, SPA, CARS
Prediction: PLS, SVM

Rp
2 = 0.91 (Feng et al., 2019)

Copper Jatropha curcas L.
(stem and root)

Fixed: Headwall Photonics SWIR M
series, Fitchburg, MA, USA

900-2500 Not
mentioned

Controlled
environment

SG, SG-SNV, SG-MSC,
SG-1st, SG-2nd, SG-
MSC-1st, SG- MSC-2nd,
SG-SNV-1st

Classification: PCA,
LDA

Accuracy ratec = 83.93 %,
sensitivityv and specificityv
(>0.70)

(García-Martín et al.,
2020)

Canopy Cadmium Basil, kale Fixed: Middleton Spectral Vision
(Middleton, Wisconsin, USA)

400-998 Not
mentioned

Controlled
environment

– SRIs, visualization – (Zea et al., 2022)

Copper,
cesium

Arabidopsis thaliana Fixed: Headwall Photonics VNIR
E-Series, USA

400-1000 0.305 Controlled
environment

– MCR, visualization – (Ruffing et al., 2021)

Copper Seriphidium
terrae-albae

Portable: FieldSpec3 (ASD, Inc.,
USA)

350-2500 0.20 Field SG, 1st Der SRIs
Prediction: Linear
regression

Rp
2 = 0.55 (Cui et al., 2019)

Copper Wheat Portable: AvaSpec-ULS2048FT-SPU
Spectrometer, Netherlands Avantes

350–1000 0.5 Field 1st Der SRIs
Prediction: Linear
regression

Rp
2 = 0.65-0.72 (Wang et al., 2020a)

Cadmium,
lead

Rice Portable: FieldSpec3 (ASD, Inc.,
USA)

350-2500 0.30 Controlled
environment

Nor-SG-1st, SG- Nor-1st,
SG- Nor-2nd, SG-Sta-1st,
SG-Sta-2nd,
Nor-Sta-SG-1st,
Nor-Sta-SG-2nd, Nor-SG-
Sta-1st, Nor-SG-Sta-2nd,
Sta-SG- Nor-1st

Significant bands
Prediction: PLS, SVM

Rp
2 = 0.7 (Zhang et al., 2020b)

Cadmium,
lead

Rice Portable: FieldSpec3 (ASD, Inc.,
USA)

350-2500 Not
mentioned

Controlled
environment

SG-2nd, Nor-1st Significant bands, RF
Classification: SVM

Accuracy ratep > 0.6 (Zhang et al., 2019c)

Cadmium,
lead

Rice Portable: FieldSpec3 (ASD, Inc.,
USA)

350-2500 0.20 Controlled
environment

SG, Sta, 1st Der Significant bands, RF,
SRIs
Classification: SVM

Accuracy ratep = 0.85-0.96 (Zhang et al., 2021a)

Mercury Tobacco Fixed: ImSpector V10E (Spectral
Imaging Ltd., Oulu, Finland)

400–1000 0.260 Controlled
environment

– PCA, CARS
Classification:
PLS-DA, SVM

Accuracy ratep = 51.11-66.67
%

(Yu et al., 2021)

Copper B. megistophylla, B.
microphylla, R.
willmottiae

Portable: FieldSpec Pro (FR, ASD,
USA)

400-2500 0.90 Controlled
environment

– SRIs, Correlation
analysis

– (Zhao et al., 2020)
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Table 5
Research studies performed from 2019 to 2022 to detect herbicide stress using proximal hyperspectral technologies.

Scale Stress type Plant HSI sensor Spectral
range
(nm)

Distance
to target
(m)

Measurement
environment

Data
preprocessing

Modeling
approaches

Optimal
performance

Refs

Leaf Glyphosate Maize Fixed: Resonon Pika
XC2 (Resonon Inc.,
USA)

400–900 1 Field – SPA,
sensitivity
analysis
Classification:
KNN, RF, SVM

Accuracy
ratep = 75
%

(Zhang et al.,
2021b)

Glyphosate Johnsongrass Portable: FieldSpec
Pro (ASD, Boulder,
CO, USA)

325–1075 0.1 Controlled
environment

– SPA
Classification:
KNN, RF,
SVM, LDA

Accuracy
ratep = 77
%

(Huang et al., 2022)

Dicamba Soybean Fixed: Resonon Pika
XC2 (Resonon Inc.,
USA)

400–900 1 Field – SRIs,
sensitivity
analysis
Classification:
NB, RF, SVM

Accuracy
ratep = 94
%

(Zhang et al.,
2019a)

56 % MCPA-Na,
Mesosulfuron-methyl,
Isoprouron

Wheat Fixed: ImSpector
V10E (Spectral
Imaging Ltd., Oulu,
Finland)

400-1000 Not
mentioned

Controlled
environment

1st Der-SG SCNN-FS
Classification:
SCNN

Accuracy
ratep = 96
%

(Chu et al., 2022b)

Canopy Quinclorac Rice Fixed: FX10
(Specim, Spectral
Imaging Ltd., Oulu,
Finland)

380–1030 0.35 Controlled
environment

WT-SG Visualization,
PCA
Classification:
SVM

Accuracy
ratep
=85-100 %

(Wang et al.,
2020b)

Glyphosate Rolled grass
sod

Fixed: SVC
HR-1024I (Spectra
Vista Corp., USA);
Portable SPECIM IQ
camera (Spectral
Imaging Ltd., Oulu,
FI)

350–2500 0.80, 0.36 Controlled
environment

SG SRIs,
visualization
Prediction:
Linear
regression

R2 > 0.86 (Bloem et al., 2020)

Triclopyr, diquat Pinus
contorta
(Douglas)

Fixed: FX10
(Specim, Spectral
Imaging Ltd., Oulu,
Finland)

400-1000 2 Controlled
environment

– SRIs,
visualization
Prediction:
SVM, PLS,
ELNET

Rv
2 = 0.65 (Scholten et al.,

2019)
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reflectance and nutrient content was also found. It was found that leaf re-
flectance measurements can be used to determine fertilization levels with
75 % and 80 % accuracy for bok choy and spinach, respectively. A major
purpose of the researchwas to explore the potential of remote sensing tech-
niques to assess crop nutrition after sunset, without affecting operations.

Siedliska et al. (2021) developed discrimination models to analyze
phosphorus content during different growth stages of wild celery, straw-
berry and sugar beet crops under differing fertilization regimes. Measure-
ments from hyperspectral imaging were incorporated into supervised
machine learning algorithms to classify plants based on four P fertilization
levels. It is feasible to accurately see howmuch phosphorus is present at the
beginning of the growth process. However, the accuracy of the classifica-
tion increases as the plant grows.

2.2. Drought

Drought is a natural occurrence caused by a lack of rain over an ex-
tended period of time that contributes to water shortages. Drought occurs
in all climates, which is characterized by awide range of negative effects re-
ducing plant growth, crop yield, and food quality (Jiao et al., 2021). Plants
that are exposed to water stress undergo a series of physiological and bio-
chemical reactions that vary with severity and duration. Lack of water
can result in reduced levels of photosynthesis in the plant as a result of
the closing of the stomata. Symptoms of a severe drought include the loss
of leaf moisture, wilting and curling of leaves, and drooping of branches,
followed by the degradation of chlorophyll levels and an overall reduction
in leaf surface area. In addition, minor to moderate drought conditions can
affect the concentration of carotenoids in plants (Lassalle, 2021). Water
stress has a direct impact on the reflectance of vegetation. Reduced chloro-
phyll on leaves increases reflectance in the visible region and changes the
position of the red edge. Due to changes in leaf moisture content, an
16
increase in reflectance can also be found at wavelengths associated with
water absorption (Fallon et al., 2020). Water stress can be irreversible
before visible symptoms become apparent, which is why identifying plant
physiological changes at an early stage is important for preventing crop
losses (Gerhards et al., 2019). The continuous spectral data available from
hyperspectral imagerymay provide greater insight into how plants respond
to water stress. Table 2 presents studies conducted using proximal
hyperspectral technologies to detect drought.

2.2.1. Leaf scale
Genetic variation in soybeans should be studied for a variety of reasons,

including intellectual property protection, increasing agricultural produc-
tion efficiency, and improving seed breeding practices. Crusiol et al.
(2021) examined hyperspectral technology for developing classification
of soybean genotypes subjected to a wide range of water availability condi-
tions during various stages of plant development. In PCA, 94 % of the spec-
tral variance of soybean genotypes can be explained by the first three
principal components, mainly SWIR wavelengths. Up to 138 spectral
bands were selected in a stepwise process for soybean genotype discrimina-
tion. The LDA was carried out using measurements from samples grown
under various water conditions and at various stages of physiological devel-
opment, showing an accuracy of between 50% and 100% in the validation
set.

A comprehensive assessment of drought impacts on fruit trees are essen-
tial for effective farming and understanding their physiological characteris-
tics, together with yield predictions. Zhou et al. (2021c) investigated
the application of hyperspectral data for the early detection of drought
and leaf photosynthetic properties in citrus trees under greenhouse condi-
tions. Studies of citrus physiology using gas exchange techniques were
complemented by measurements of hyperspectral reflectance of leaves,
which were undertaken on citrus grown under various drought conditions.



Table 6
Research studies performed from 2019 to 2022 to detect temperature-induced stress using proximal hyperspectral technologies.

Scale Stress
type

Plant HSI sensor Spectral
range
(nm)

Distance
to target
(m)

Measurement
environment

Data
preprocessing

Modeling
approaches

Optimal
performance

Refs

Leaf Frost Wheat Fixed: Resonon Pika XC2
(Resonon Inc., USA)

392–889 0.20 Controlled
environment

– SRIs – (Murphy et al., 2020)

Frost Blueberry
bud

Fixed: Micro-Hyperspec
VNIR (X-Series, Headwall
Photonics, Fitchburg, MA,
USA)

517–1729 0.348 Controlled
environment

Nor PCA, SPA
Classification:
PLS-DA, QDA

Accuracy
ratep =
64-82 %

(Gao et al., 2019,
2021)

Frost Tea Not mentioned 871–1766 Not
mentioned

Controlled
environment

Nor Prediction: PLS,
PCR, Linear
regression

Rv
2 = 0.968 (Asante et al., 2021)

Drought,
heat

Cotton Portable: FieldSpec 3 (ASD,
USA)

350-2500 0 (leaf
clip)

Field – PCA, HCA, SRIs
Prediction: PLS

R2 > 0.70 (Melandri et al.,
2021)

Heat Soybean Portable: FieldSpec 4 (ASD,
USA)

400-2500 0 (leaf
clip)

Field – SRIs
Prediction: PLS,
RR, LASSO, SVM,
linear regression

Rp
2 =

0.48-0.65
(Kumagai et al.,
2022)

Leaf &
Canopy

Frost Wheat Portable: FieldSpec 3 (ASD,
USA); Spectral Libraries

350–2500 0 (leaf
clip), 1.5,
0.40, 0.15

Field – SMA, SRIs R2 =
0.58–0.75

(Fitzgerald et al.,
2019)

Canopy Frost Loblolly
pine

Fixed: Resonon Pika XC2
(Resonon Inc., USA)

390–1000 Not
mentioned

Controlled
environment

– SPA
Prediction: PLS
Classification:
SVM, LDA

Rp
2 = 0.78

Accuracy
ratep = 97
%

(Lu et al., 2021b,
2021a)

Frost Wheat Portable: FieldSpec 3 (ASD,
USA)

350–2500 0.30, 1 Controlled
environment,
Field

– SRIs, Correlation
analysis, SPA
Prediction: MLR,
PCR

Rv
2 = 0.841 (Xie et al., 2020b)

Frost Maize Fixed: Resonon Pika XC2
(Resonon Inc., USA)

395-885 Not
mentioned

Controlled
environment

SG-1st Der Classification:
CNN

Accuracy
ratep = 41.8
%

(Yang et al., 2019)

Heat Ginseng Fixed: VIS/NIR, SWIR
(Headwall Photonics,
Fitchburg, MA, USA)

400–1800 0.26 Controlled
environment

– VIP-SPA,
Visualization
Classification:
PLS-DA,

Accuracy
ratep = 98.9
%

(Park et al., 2021)

Heat Rice Portable: FieldSpec Pro
(ASD, Boulder, CO, USA)

350–2500 1 Field – Correlation
analysis, SRIs
Prediction: linear
regression

Rp
2 = 0.83 (Xie et al., 2019)

Heat,
drought

Strawberry Fixed: Headwall Photonics
VNIR A-Series, USA

397-1003 Not
mentioned

Controlled
environment

– Correlation
analysis, SRIs
Classification:
SVM, RF, DT,
Adaboost, XGB

Accuracy
ratep = 94
%

(Poobalasubramanian
et al., 2022)

Heat,
frost,
salinity

Maize Fixed: Specim V10 (Specim
Spectral Imaging Oy Ltd.,
Oulu Finland)

400–1000 Not
mentioned

Controlled
environment

– PCA
Classification:
SVM

Accuracy
ratep = 84
%

(Tirado et al., 2021)
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A significant decrease in photosynthetic parameters was observed during
drought, and this trend was most apparent within the top layer of the
plants. Four machine learning models were evaluated for the prediction
of photosynthetic parameters from leaf reflectance spectra, and the RF
algorithm showed the highest ability to predict photosynthetic parameters
(R2 was from 0.88 to 0.92).

The most significant challenge facing winegrowers in the Mediterra-
nean region is the management of water. Climate change has led to fre-
quent and severe droughts, which has resulted in reduced yields for wine
producers. As a result, the productivity of the vineyards is compromised, af-
fecting the alcohol content. Using hyperspectral data, Laroche-Pinel et al.
(2021) evaluated the results from several vine plots consisting of three
grape varieties with varying growth stages and irrigation methods. Regres-
sion methods were used to examine correlations between leaf reflectance
and vine water status as determined by stem water potential. The findings
revealed the most effective spectral domains and vegetation indices for
assessing vine water availability. Short Wave Infrared domain was directly
affected bywater content and Near Infrared and Red-Edge bands were indi-
rectly correlated with water status by affecting chlorophyll concentration
and cellular morphology. Their study aimed to determine whether vine
water status could be monitored over a landscape with the help of multi-
spectral satellite spectral bands, such as Sentinel-2 data.
17
Using hyperspectral leaf reflectance, Burnett et al. (2021) examined
metabolism-driven responses to drought in the early stages before any vis-
ible signs are present rather than relying solely on incomplete drought indi-
ces. The physiology, biochemistry, and spectral responses to drought
conditions were determined in six glasshouse-grown plants. PLS model
used for prediction of metabolite content, with validation R2 values of
0.49 to 0.87. LDA and PLS-DA were also used to distinguish between plants
that are watered and those that are affected by drought through the mea-
surement of spectral characteristics and traits. Finally, the models devel-
oped by the greenhouse were validated in an independent field study.
2.2.2. Canopy scale
Spectral indices are derived from few bands without considering the ef-

fects of drought on other parts of the spectrum. Usingmachine learning and
advanced computing capabilities, full spectra can be used to gain a deeper
understanding of the effects of drought. The study of Dao et al. (2021) eval-
uated the performance of ANN, SVM, and RF in monitoring droughts with
traditional spectral indices. Using close-range HSI technology, full spectra
were processed with the models to assess the effects of drought on Bromus
inermis grass grown under different treatments. Most of the spectral indices
were not able to distinguish between short- or long-term drought stress.



Table 7
Research studies performed from 2019 to 2022 to detect other environmental stresses than those previously considered using proximal hyperspectral technologies.

Scale Stress type Plant HSI sensor Spectral
range (nm)

Distance
to target
(m)

Measurement
environment

Data
preprocessing

Modeling
approaches

Optimal
performance

Refs

Leaf Rare earth
mining areas

Three
types of
reclaimed
vegetation

Portable: FieldSpec 4
(ASD, USA)

350–2500 Not
mentioned

Field 1st Der Correlation
analysis, SRIs
Prediction: PLS,
SAE, ANN

Rv
2 = 0.981 (Li et al., 2022a)

Rare earth
mining areas

Six types of
reclaimed
vegetation

Portable: FieldSpec 4
(ASD, USA)

350–2500 Not
mentioned

Field 1st Der SRIs, sensitivity
analysis
Classification:
ANN, Fisher and
stepwise
discrimination

Accuracy
ratep = 93.6
%

(Zhou et al.,
2022b)

Waterlogging Oilseed
rape

Fixed: Resonon Pika XC2
(Resonon Inc., USA)

400–1000 0.35 Field SG SPA, PCA,
Visualization
Classification:
QDA, KNN, SVM

Accuracy
ratep = 100
%

(Xia et al., 2019)

Oil Five
species

Portable: FieldSpec 4
(ASD, USA)

400-2500 0 (leaf
clip)

Field – Correlation
analysis,
PROSPECT
(Radiative
transfer)
Prediction:
Univariate
regression

Rv
2 ≥ 0.74 (Lassalle et al.,

2019b)

Ozone Soybean Portable: PSR-3500
(Spectral Evolution,
Lawrence, MA, USA)

350- 2500 0 (leaf
clip)

Field – Correlation
analysis, SRIs
Prediction: linear
regression

Rv
2 = 0.64 (Gosselin et al.,

2020)

Leaf &
Canopy

Oil Rubus
fruticosus L.
(bramble)

Portable: FieldSpec 4
(ASD, USA)

350-2500 0 (leaf
clip), 0.05
and 0.2

Controlled
environment

SG SRIs
Prediction:
Logistic
Regression;
Classification:
RLR

R2 > 0.7
Accuracy
ratep = 90
%

(Lassalle et al.,
2019c)

Canopy Natural gas
leakage

Various
plant
species

Portable: SVC HR-1024I
(Spectra Vista Corp.,
USA); Fixed: SOC710VP
(SOC, USA)

350–2500;
400 −
1000

1 and 5 Field SG SRIs, Correlation
analysis,
Visualization

– (Jiang et al., 2020;
Pan et al., 2022;
Ran et al., 2022,
2020)

Carbon
dioxide

Wheat Portable: FieldSpec 3
(ASD, USA)

350-2500 1.2 Field 1st Der Correlation
analysis
Prediction: linear
regression

Rv
2 > 0.8 (Liu et al., 2021a)

Hailstorm Cotton Portable: FieldSpec 2
(ASD, USA)

325-1075 0.5 Field SG Correlation
analysis, SRIs,
VIP
Prediction: PLS,
SVM, ANN

Rv
2 = 0.85 (Wang et al.,

2021)
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Using pre-processed spectra and machine learning algorithms, drought
detection was achieved with up to 100 % accuracy.

It is essential to choose plants based on their appropriate characteristics
in forest development plans and to ensure that forests are managed sustain-
ably. In a study done by Mazis et al. (2020), images captured by RGB and
hyperspectral cameras were used to assess oak seedlings' biophysical traits
and their response to drought under controlled conditions. Images of plants
acquired with high throughput were obtained by low throughput tests,
involving measurements of gas exchange, leaf spectrum analysis, and phys-
iological characteristics. The chosen traits were relevant for forest breeding
and monitoring species health in drought-prone areas. The results of image
analysis and observedmorphological characteristics were highly correlated
in both well-watered and dry-down environments. This study demon-
strated that vegetation indices were an effective tool for assessing the
health and productivity of oak seedlings.

For distinguishing phenology effects related to drought, Sobejano-Paz
et al. (2020) studied soybean andmaize crops using hyperspectral and ther-
mal images under controlled conditions, which included a variety of photo-
synthetic pathways and soil water levels. It was determined the potential of
this approach to detect changes in leaf physiology under three soil moisture
regimes and evaluate physiological, morphological, biochemical and
remote sensing responses to water stress. Moreover, PLS-determined
18
important spectral bands associated with drought were not found at the
same wavelengths as the studied vegetation indices, indicating the value
of having a full spectrum to describe leaf function and suggest crop-
specific wavelengths.

The study conducted by Krishna et al. (2021) to assess the response of
ten different rice genotypes in drought conditions was based on the use of
thermal images to evaluate stress severity and genotype responses, as well
as to calculate the Crop Water Stress Index (CWSI). Additionally, canopy
reflectance measurements from the same genotype fields were collected si-
multaneously with thermal imaging. A significant correlation was observed
between relative water content (RWC) measured in the laboratory and
CWSI (R2 = 0.63). PLS model was used to develop a relationship between
CWSI and canopy hyperspectral data, and the ten most significant wave-
lengths for detecting drought stress in plants were identified.

2.3. Salinity

Growing plants under saline conditions limits crop productivity, result-
ing in substantial yield losses. The losses can be mitigated by choosing salt-
tolerant crops, which provide improved irrigation options and decrease
freshwater consumption (Morton et al., 2019). The deposition of salt occurs
naturally due to wind and rainfall, as well as irrigation with saltwater and



Fig. 5. Procedure for the detection of hyperspectral regions corresponding to nitrogen content (Yamashita et al., 2020).
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soil amendments. It has become a global environmental concernmost prev-
alent in arid regions. The majority of crops cannot tolerate this stressor
which affects them in multiple ways. Accumulation of salt causes degener-
ation of leaf tissue, as well as changes in the interactions between plants and
water and nutrients, resulting in a reduction of chlorophyll and disease
resistance (Lassalle, 2021). A variety of symptoms of salinity stress can
occur, including subtle discoloration or yellowing of the leaves. However,
as with most stresses in plants, these symptoms are commonly observed
as increased reflectivity in green areas as chlorophyll levels are reduced
(Goldsmith et al., 2020). On the other hand, changes in reflectance between
species with different leaf morphologies may differ significantly. As a
result, salinity stress in plants can be measured and assessed using
hyperspectral data. Salinity detection studies using proximal hyperspectral
technologies are presented in Table 3.

2.3.1. Leaf scale
The productivity of salty soils can be enhanced through the selection of

salinity-tolerant varieties and genotypes. Das et al. (2020) used the
hyperspectral technology tomonitor salinity stress across 56 rice genotypes
to determine their salinity tolerance and sensitivity. In this study, a compar-
isonwasmade of PCA and PLS combinedmodeling strategies to predict leaf
nutrients under salinity stress. It was shown that the combined approach
gives more accurate results than simple ones. PLSR-combined models pro-
duced the best performance in selecting salt-tolerant rice genotypes based
on leaf nutrition.

Calzone et al. (2021) identified and monitored two varieties of pome-
granate during salt treatment for 35 days. PLS models were built based on
the spectra to predict a wide range of leaf parameters critical to understand
plant-salinity relationships. It was possible to analyze spectral signatures
even without seeing any symptoms 14 days after salt treatment, but it
was not possible to determine the tolerance levels between cultivars.

The use of optical techniques can detect plant stress before visible symp-
toms develop. However, there is a lack of testing for multiple environmen-
tal factors, as well as an insufficient level of data analysis. The potential of
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HSI was investigated by Cotrozzi and Couture (2020) in the context of char-
acterizing crop leaf reactions tomultiple stresses before the development of
visible symptoms. In addition to reflectance spectra, physiological and bio-
chemical responsesweremeasured on lettuce leaves under the combination
of different light intensities and types, fertilization, and salinity conditions.
Multiple stress conditions, independently and in combination, were charac-
terized by PLS, PLS-DA, and spectral indices. It was found that spectral data
were well suited to predict the osmotic potential, chlorophyll and phenol
levels with a validation R2 between 0.70 and 0.84. It was observed that let-
tuce yields and quality were improved under high intensity sodium lighting
with high fertilization and without salinity.

The study by Boshkovski et al. (2022) examined photosynthesis and an-
tioxidant activity in olive plants exposed to drought and salt treatment, and
their relationship with spectral reflectance. The relationship between spec-
tral data and biochemical characteristics was studied using PCR, PLS, and
LDA. Plants under stress developed a reduction in photosynthesis and
water content, and an increase in enzyme activity. Significant wavelength
ranges were determined based on enzyme activity and specific vegetation
indices. The results of this study may enable farmers to identify stress effec-
tively in large olive trees and may assist them in optimizing crop growth,
productivity, and sustainability.

2.3.2. Canopy scale
Salinity varies along the soil profile due to the downward flow of water

in the soil. Due to this, in order to determine the extent of soil salinity stress
on crops caused by irrigationwith salt water, soil salinitymust bemeasured
at different depths. An experiment was performed on six winter wheat plots
under three levels of salinity irrigation, to determine how vegetation indi-
ces correlate with salinity at four depths (Zhu et al., 2021). Because the
grain filling stage is highly sensitive to salinity, HSI vegetation indices at
this stage were correlated with salinity at different soil depths. Results
from this study suggested that the optimal indices incorporating salt-
affected blue, red-edge, and near-infrared wavebands are more effective
for estimating soil salinity, especially at 30 cm depth (R2 = 0.81). To
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solve this practical problem, linear or quadraticmodels based on vegetation
indices were suitable for determining soil salinity at multiple depths and
identifying salt stress in wheat. An evaluation of local saline water irriga-
tion systems could be achieved using this technique.

In coastal areas, climate change, increased soil fertility, insufficient rain-
fall, and excessive harvesting have caused rapid changes in the environ-
ment, resulting in increased stress on coastal salt marsh plants. Because
marsh state can quickly change due to these drivers, it is crucial to detect
stressors early. However, barrier access and the vulnerability of coastal
salt marshes make fieldwork difficult. Using hyperspectral imagery,
Goldsmith et al. (2020) investigated the effects of three major stressors (ni-
trogen, salinity, and oxidation-reduction potential) on Spartina alterniflora
in the field. Models of spectral response were consistent with salinity and
foliar nitrogen within greenhouse and field experiments, however, they
could not be adapted to the field because of the insufficient factors exam-
ined in greenhouses and the multiple stresses encountered in the field.

Feng et al. (2020) used HSI to characterize 13 okra genotypes after salt
treatment for two and seven days as well as assess the physiological and
biochemical characteristics of the crop, which is a laborious process. Algo-
rithms were developed for segmenting leaves and plants from RGB images
derived fromHSI images and they can be used tomeasure okra's physiolog-
ical responses to salinity stress. The relationship between leaf spectral
reflectance data and physiological traits was analyzed using PLS models
with correlation coefficients in the range of 0.588–0.835.

Using robust and nondestructive approaches, stress tolerance indices
(STIs) can be employed along with early grain yield (GY) estimation
methods to assist breeders in developing improved genotypes that are toler-
ant to various environmental conditions. In the study by El-Hendawy et al.
(2021a), the spectral reflectance indices were assessed for their ability to
predict GY and STI properties of different wheat genotypes under salinity
and control treatments. As a result of the MLRmodel, three spectral indices
were identified as the most significant factors affecting GY.

2.4. Heavy metal stress

A major source of hazardous contaminants in plants is the presence of
heavy metals which are present in the nature, industrial wastes and envi-
ronmental pollution in the air, water and soil. Heavy metals are easily
absorbed by plants and have long-lasting effects, which can inhibit the
growth of plants. Moreover, the pollutants can also make their way into
the food chain, potentially posing grave health risks (Wang et al., 2018).
Global economic growth and rapid industrialization have led to increase
the problem, especially in developing countries with large populations.
Some metals, such as iron, copper, and zinc, are essential to plants but are
poisonous if they exceed a certain concentration, whereas other elements
(such as lead, arsenic, cadmium, and mercury) are toxic to plants even at
low concentrations (Küpper and Andresen, 2016). Metallic stress adversely
affects a wide range of essential functions, such as metabolism, mineral nu-
trient transport, and water uptake, and can alter pigmentation and leaf
structure (Ruffing et al., 2021). The level of heavy metals in agricultural
areas, therefore, should be closely monitored to ensure that they do not ad-
vance to harmful levels. As a potentially viable alternative to conventional
methods of monitoring heavy metal contamination in plants, it is necessary
to deeply evaluate the capabilities of hyperspectral sensing. In Table 4, we
present studies conducted using proximal hyperspectral technologies to
detect heavy metals.

2.4.1. Leaf scale
A combination of maize leaf spectra under different levels of Cu and Pb

stress and time-frequency analysis was conducted to convert pollution fea-
tures based on spectral data into frequency information. As a result, weak
difference information can be significantly enhanced. With the use of a
PCA diagram along with an SVM classifier, the pollutant characteristics
could be identified, and the red edge was found to be the most effective re-
gion of the spectrum to discriminate Cu from Pb (Li et al., 2021a). Lin et al.
(2021) developed an efficient method for monitoring Cu concentrations in
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chicory using hyperspectral data. The relationship between leaf Cu levels
and hyperspectral measurements during growth stages was investigated
using CWT and PLS methods. Effective wavelengths that reliably track
leaf Cu concentration changes were selected, and accurate detection
models were built.

In a comprehensive study conducted by Feng et al. (2019), HSI was used
as an alternative for the evaluation of the phytoremediation capability of
Miscanthus sacchariflorus tissues for Cd contamination (Fig. 6). Chemomet-
ric analysis of the complete spectral information enabled the comparison of
multiple wavelengths and resulted in an improved model over vegetation
indexes. Based on optimal wavelengths, regression models provided the
best prediction of Cd concentrations in leaves and roots. As a result,
CARS-PLS was the most accurate model for leaves, while CARS-SVM pro-
vided the best prediction for roots. Finally, the distribution maps of Cd in
plant tissues were derived using the optimalmodels incorporating the char-
acteristics of each pixel. Toward the development of multispectral imaging
systems that are affordable and easy to use in real-time, composition-based
visualizations of reduced bands would be beneficial.

The heavy metal stress in rice plants avoids water absorption and
ion channel function, as a result of which the plants usually suffer
from water shortages and excessive amounts of free proline accumulations
(Choudhary et al., 2007). Thus, the free proline content was considered to
be able to affect stress responses caused by heavy metal exposure. Shen
et al. (2020) proposed a hyperspectral imaging and chemometrics-based
approach to quantify free proline in rice leaves exposed to Cd stress. Rice
leaves were grown and studied at four different time points and five differ-
ent Cd concentrations. Based on the spectra and effective wavelengths, pre-
dictionmodels were developed. For the purpose of illustrating the variation
in free proline content in rice leaves, the distribution of free proline in
leaves was mapped. The best detection of free prolines was based on 27
wavelengths and the Rp of 0.943.

2.4.2. Canopy scale
Cd stress can be evaluated using HSI in two vegetation types, which are

significantly different in terms of their vulnerability to Cd stress. Using bio-
char from hardwoods as a local amendment, Cd stress in these cropswas re-
duced, and Cd uptake into plant tissueswasminimized. To optimize the use
of HSI, a number of vegetative indices that are sensitive to Cd stress were
investigated. The anthocyanin reflectance index (ARI) was the most effec-
tive index for assessing plant stress reductions resulting from biochar appli-
cation. The authors evidenced that HSI could be used to find the soil
amendments that are capable of binding Cd, allowing for rapid remedial
plans. Additionally, HSI may provide valuable insight into regulating
plant growth by biochar amendments (Zea et al., 2022). In another study,
Arabidopsis thaliana stress signatures corresponding to salt, copper, and
cesium were identified using HSI and multivariate curve resolution
(MCR) analysis. Despite all stresses having similar physiological effects,
hyperspectral imaging yielded distinct fingerprints that allowed differenti-
ation of stress types. To distinguish the cesium stress from other similar
stressors, salt and copper were also included in this study. In addition,
root anatomy, leaf area, and chloroplast structure were measured to evalu-
ate the impact of stress on the plant. Results of this study indicated that HSI
can be used for monitoring environmental chemicals, including radioactive
cesium released by nuclear reactors (Ruffing et al., 2021).

In the study of Yu et al. (2021), a proximal HSI technique combined
withmachine learning techniqueswas used to determine canopy character-
istics of tobacco plants exposed to different levels of Hg. In addition, the
structure and appearance of mesophyll tissues were examined in tobacco
leaves. To distinguish stressed from unstressed samples, discrimination
models were built by using whole spectra and effective wavelengths identi-
fied by PCA and CARS. Zhang et al. (2020b) designed a cross-stress exper-
iment involving multiple heavy metals and evaluated the possibility of
determining exposure to Cd and Pb from hyperspectral images of the rice
canopy. Significant bands are mainly located in the range of 681–776 nm
and 1224–1349 nm for Cd stress and 712–784 nm for Pb stress. Cd can
be predicted using an R2 value of 0.7, but Pb cannot be precisely predicted.
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Due to differences between laboratory and field conditions, applying
spectral data characteristics to all situations can be challenging. Through
field experiments, Wang et al. (2020a) developed a methodology to deter-
mine copper content within wheat canopy using hyperspectral data col-
lected throughout the growing season. The copper content of the wheat
canopy increased with increasing soil stress, and its spectral reflectance
changed. Spectral indices and wavelengths were selected according to
their ability to predict copper levels in the wheat canopy. In addition, it
was found that the sensitive bands identified provided a good indicator of
copper content in the wheat canopy during tillering, jointing, and heading.

2.5. Herbicide

The inappropriate use of herbicides can cause direct pollution of the en-
vironment, and these pollutants can then enter the food chain. There may
be adverse effects on crops and theymay interfere with physiological mech-
anisms (Mohseni-Moghadam et al., 2016). Thus, leaf symptoms may vary
depending on the chemical and dosage used. The spectral responses of
plants to herbicides have generated increasing interest in the need for reg-
ulation and monitoring of these substances. The following sections discuss
the application of hyperspectral technologies to assess crop damage from
herbicides in agricultural fields in order to provide practical management
advice. We also present studies conducted using proximal hyperspectral
technologies to detect herbicide stress in Table 5.

2.5.1. Leaf scale
Glyphosate is a non-selective herbicidewidely used in cropfields to con-

trol weeds. The use of glyphosate can cause drift into unintended areas,
causing damage to plants that are not glyphosate-resistant. Through the
use of the HSI technique combined with machine learning algorithms,
Zhang et al. (2021b) evaluated the damage caused by glyphosate infield ex-
periments and the recovery rate of damaged plants in experiments with dif-
ferent rates of glyphosate application. It was possible to observe the spectral
variation pattern among maize plants treated with glyphosate at different
concentrations. The spectral differences between recoverable and non-
recoverable plants could be observed as early as one week after treatment.
Based on spectral sensitivity analysis, two spectral indices were created
based on 449 nm, 669 nm, and 771 nm reflective wavelengths that could
classify maize plants as recoverable and unrecoverable with an overall
accuracy of over 95 %. In addition, this research group (Zhang et al.,
2019a) used HSI to investigate soybean plants' responses to dicamba, an-
other commonly used herbicide, which showed promise for predicting
their recovery ability and the severity of damage they suffered.

In a study Chu et al. (2022a), HSI combined with shallow convolutional
neural networks (SCNNs) was employed to identify the reflectance charac-
teristics of two varieties of wheat plants exposed to different herbicides and
stress rates over time in order to detect herbicide stress in its early stages.
According to the first-order derivatives, the effects of different herbicides
are primarily observed at the wavelengths of 518–531 nm, 637–675 nm,
and around 700 nm, reflecting the varying levels of chlorophyll and carot-
enoids. The proposed approach yielded 96 % accuracy in determining her-
bicide types and 80 % accuracy in determining stress levels after 48 h in
both considered wheat varieties, which have great potential for developing
field-based herbicide stress recognition methods.

It was also evidenced that hyperspectral sensing was able to detect
symptoms occurring in cotton plants as soon as two days after application
of phenoxy herbicides (Suarez et al., 2017). In addition to being highly
correlated with yield, the green peak (around 550 nm) and NIR spectrum
significantly increased the accuracy of the monitoring of the dose drifted
to the crop by >25 %. This finding greatly simplified the analysis of the
herbicide impact on cotton through an emphasis on other factors (e.g. the
timing of exposure and data gathering) instead of preprocessing.

2.5.2. Canopy scale
As an endogenous hormone, salicylic acid is able of reducing herbicide

toxicity by activating antioxidant enzymes and improving the
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detoxification process of rice plants (Wang et al., 2016). Wang et al.
(2020b) explored the use of ground-based HSI to assess the toxicity of the
herbicide quinclorac and alleviating effects of salicylic acid on rice plants.
This study examines the influence of rice varieties on detection perfor-
mance, establishing detection models and visualizing leaves with different
treatments. Rice herbicide toxicity can be observed by changes in the reflec-
tance spectrum and physiological measurements, and visualizations of her-
bicide toxicity in rice can also provide an insight into the process.

Bloem et al. (2020) applied HSI technology to identify glyphosate-
specific spectrum signatures for control and drought-stressed plants. In
this paper, eight spectral vegetation indices were selected based on spectral
analysis, and their effectiveness for sensing glyphosate application on pots
with rolled grass sods was explored. Also, photosynthetic pigments, poly-
phenols, and dry matter content of the leaves were evaluated, as these are
indicators of plant health and stress. An early detection of glyphosate appli-
cation can be made using the normalized difference lignin index (NDLI).

Monitoring the impact of herbicide applications on invasive conifers at
large scales is essential for evaluating their effectiveness and selecting the
proper doses. Scholten et al. (2019) used hyperspectral data to explore
methodologies for quantifying herbicide stress in Pinus contorta (Douglas),
a widely distributed exotic conifer. To detect the effects of herbicide appli-
cation before visible changes occurred, the effects of herbicide treatment on
needle discoloration, spectra, and four important physiological characteris-
tics were investigated. Results demonstrated that remote monitoring of
indicators, such as the photochemical reflectance index (PRI), could distin-
guish between the two herbicide applications and the control within two
days after herbicide treatments. It is useful for determining the extent of
damage resulting from herbicide applications to determine whether addi-
tional treatment is necessary.

A growing number of herbicide-resistant weeds pose a challenge to the
economic viability of crop production systems by decreasing crop yields. It
was applied ground-based hyperspectral imagery to classify herbicide-
resistant and herbicide-susceptible kochia biotypes, which have shown
resistance to both glyphosate and dicamba (Nugent et al., 2018). Up to
80 % classification accuracy can be achieved by using support vector ma-
chines (SVM). During another study undertaken by this group (Scherrer
et al., 2019), data were collected on a broader set of crops and weed species
aswell as a variety of resistance rates and types. The process involves imaging
kochia biotypes at various stages of growth and analyzing the accuracy of the
classification over time. Further, the results were derived from neural net-
works, which led to improvements of up to 99 % in classification accuracy.

2.6. High and low temperatures

Global warming has led to an increase in the frequency and intensity of
adverseweather conditions, which in turn have caused a rise in the damage
caused by natural disasters. Climate change has the potential to pose a
threat to food safety as adverse changes in temperature may negatively im-
pact crop yields. The effects of these alterations on plants can result in their
death. However, based on their severity, plants may be able to survive and
may even thrive despite stresses (Feng et al., 2018). It is important to note,
however, that recovery from such stresses is often complicated by a decline
in the level of productivity. It is recommended that reflectance data be used
to track the effects of temperature changes, as these fluctuations affect leaf
water characteristics, pigmentation, growth, and chemical composition
(Kumagai et al., 2022). In addition, quantifying damage can be effective in
alleviating the adverse effects of temperature injury. Table 6 presents studies
that used proximal hyperspectral technologies to detect temperature-induced
stress in plants.

2.6.1. Leaf scale
Wheat yields can be affected significantly by frost damage as the plants

grow. In spite of limited options for frost protection, the ability to quickly
determine frost-induced damage would provide timely remedial measures.
In a controlled environment room, Murphy et al. (2020) investigated the
effects of frost stress on the spectral characteristics of wheat plant parts



Fig. 6. Illustration of the process of image processing and data analysis for quantifyingCd concentrations inM. sacchariflorus.Redrawnwith permission fromRef. (Feng et al., 2019).
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(heads and flag leaves) using HSI. Spectral reflectance changes caused by
frost stresses can be identified in the samples from one to five days after
frosting. In both wheat heads and leaves, significant differences were
detected over time between treatments across several wavelength bands,
including blue, red, and NIR. Furthermore, the relationship between time
and treatment resulted in significant changes in the spectra, especially in
the green and NIR spectra for leaves and in the green and red spectra for
heads. Results were then compared to those of existing multispectral tech-
niques to determine whether frost damage could be identified in the field.

Cold temperatures in winter and early spring can be problematic for
blueberry producers since this can severely damage the buds. By using
HSI, Gao et al. (2019b) studied the possibility of detecting damaged blue-
berry buds when early spring frost occurs. Lab-simulated freezing treat-
ments were conducted at two phenological stages (bud swell and early
pink) as a preliminary development test. As a result of PCA and SPA tech-
niques, 615, 673, 690, 756, 979, and 1467 nm were identified as the key
bands to be used to distinguish healthy buds from injured ones. Using the
PLS-DA model, an accuracy of >0.75 was obtained. In another study, this
research team examined the status of buds throughout the entire growth
cycle in winter and early spring (Gao et al., 2021).

Drought and heat are often concurrent events during the growing sea-
son that result in reduced crop growth and yields. Identifying phenotypic
22
features associated with the physiology of resistance to drought and heat
stress would be imperative to produce crops adapted to climate change.
Leaf metabolomes reflect changes that occur due to stress in the plant's
physiology, and these changes are referred to as an intermediate pheno-
type.Melandri et al. (2021) studied the effects of leaf metabolites on leaf re-
flection under water and heat stress in 22 cotton genotypes over two years.
It was found that lipid changes were the most important factor in adapting
leaves to drought. Adaptations made by plants to drought and how they af-
fected fiber characteristics were linked to the level of stress. In this study,
hyperspectral reflection measurements were employed to predict leaf metab-
olites that were successful in differentiating stressed from non-stressed
samples and showing which spectrum regions have the greatest significance.

2.6.2. Canopy scale
Loblolly pine seedling growth is affected by the yearly average mini-

mum winter temperature (MWT) in the area where the seeds are produced
and it guides the distribution of more suitable seeds. According to the
MWTs of seed sources, plants are allocated to climatic regions where they
are cold hardy. However, this method may become ineffective over time
and as the number of ancestors grows. An innovative technique based on
hyperspectral imaging was developed by Lu et al. (2021b) for evaluating
freeze damage and predicting MWT based on the seed source origin of



Fig. 7. Framework for the development of leaf water content maps on a maize farm. Redrawn with permission from Ref. (Raj et al., 2021).
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the seedlings. The work evaluated the effects of an artificial freeze event on
seedlings from different geographical areas, which represent various levels
of MWT at seed origin. Seedling images were taken at different time inter-
vals before and after freezing. There was a significant correlation between
the MWT and freeze damage, and models built on the top portion were
the most accurate predictors of both. According to the study, HSI may be
a useful method for assessing the cold hardiness of coniferous species with-
out destroying them. Additionally, this group developed classification
models using SVM and variable selection to identify healthy and stressed
seedlings prior to and following freezing (Lu et al., 2021a).

As a method of evaluating the optimal period for yield estimation,
hyperspectral measurements can be applied in-situ for winter wheat
under freeze stress and to perform a yield estimation model. Xie et al.
(2020b) investigated the canopy reflectance response of winter wheat
under freeze stress by inducing low temperatures during early growth, as
23
well as quantifying the relationship between canopy reflectance and
yield. Based on the reflectance data, it was shown that the red edge region
under freeze stress was associated with crop yield, with around 38 % of the
extracted bands located in this region (680-780nm). Three calibration
methods and field validation results were compared to determine the
most appropriatemonitoring time period and the bestmodel to predict win-
ter wheat yield during the early growth phase under freezing conditions.
Using hyperspectral technology, a monitoring and yield prediction study
can be conducted under cold weather conditions for winter wheat.

Heat stress remains a serious environmental issue affecting the growth
and long-term viability of ginseng plants despite advances in agronomy
for cultivating elite ginseng. To develop a model to assess the sensitivity
and resistance of ginseng plants to heat stress, visible and near-infrared
hyperspectral images were captured in the laboratory (Park et al., 2021).
In order to analyze the acquired hyperspectral images, the PLS-DA
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technique combining variable selection algorithms was applied. Based on
validation data, models developed provided 79.2 % accuracy along 12
bands in the Visible/NIR spectrum and over 98.9 % accuracy along 18
bands in the SWIR spectrum. In this study, it has been shown that heat stress
negatively impacts ginseng's photosynthetic process by affecting its internal
proteins. Additionally, the spectral image proved to be more effective than
a color image in classifying heat-stressed plants. The results demonstrate
that the HSI is able to distinguish between heat-susceptible plants and
heat-resistant plants accurately.

2.7. Other environmental stresses

There are many environmental issues around the world that can cause
plant stress, such aswaterlogging, oil pollution, gas leaks,mining, hailstorms,
acid rain, etc. Most crops are adversely affected by short- or long-term soil
waterlogging, which is usually caused by severe weather conditions, such
asflooding, heavy rain, and storms. As a result ofwaterlogging, plant growth,
nutrient uptake, chlorophyll concentration, as well as metabolic activity can
be reduced, which can be destructive to plants (Kaur et al., 2020). Also,
waterlogging can cause plants to suffer from water deficiency by blocking
their stomata due to the lack of oxygen.

Carbon dioxide, methane, ethane, and ozone may also cause plant
stress, which are found in soils and the atmosphere. Plants are affected
either directly by gaseous emissions from their leaf surfaces or indirectly
by adverse environmental situations (Grulke and Heath, 2020). This is ac-
companied by the appearance of yellow, red, and black lesions on leaves.
In Table 7, we present studies using proximal hyperspectral technologies
to detect other environmental stresses than those previously considered.

2.7.1. Leaf scale
Rare earth mining disrupts the physicochemical characteristics of the

reclaimed land and creates multiple stresses which interfere with the phys-
iological functioning of the reclaimed vegetation. A variety of spectral pro-
cessing methods were employed to analyze the spectra of three vegetation
types found in rare earth mining regions (Li et al., 2022a). It was found that
reclaimed vegetation differed significantly from typically vegetated areas.
This study investigated the spectral characteristics of vegetation and
found correlations between the chlorophyll concentration and the spectral
indices. Also, there were specific adaptations to each kind of environment.
The sparse autoencoder network proved to be the most effective model in
order to quantify the amount of chlorophyll in reclaimed vegetation. The
results of this study provide useful information for understanding and con-
trolling the growth of vegetation in mining regions, as well as offering a
direction for rehabilitation efforts. In another study by this research team
(Zhou et al., 2022a), vegetation types were accurately distinguished from
each other by identifying themost appropriate feature bands, which helped
to categorize the various species present in the mining area, thereby reduc-
ing the workload for future modeling of plant characteristics for the kind of
areas.

A waterlogged oilseed rape plant may experience leaf lodging during
flowering and a reduction in pollen production and plant growth as well.
Furthermore, this can cause physiological damage since waterlogging can
affect fertilizer absorption. Xia et al. (2019) investigated the potential use
of HSI for detecting varying levels of oilseed rape waterlogging stress
over a period of three to six days. Different classification models were
used to identify waterlogging stress among two oilseed cultivars. The SPA
algorithm was used to reduce modeling complexity, and the QDA model
achieved high classification accuracy.

Monitoring ozone stress in plants can lead to the development of ozone-
tolerant varieties with better yields. The negative impact of ozone on plant
growth is measured through visual scores. A study performed by Gosselin
et al. (2020) evaluated the effects of chlorosis and necrosis visual scores
on assessing soybean ozone damage, as well as selecting spectral bands
for the normalized difference spectral index (NDSI) which had a favorable
relationship to foliar visual scores. In addition to confirming that NDSI
was very closely related to visual scores in all species, ozone concentrations
24
were evaluated to predict likely damage timing based on ozone-sensitive
bands observed in soybean leaves and physiochemical characteristics.

2.7.2. Canopy scale
As a result of natural gas leakage into the soil, it may negatively impact

plant health, leading to observable signs and changes in canopy spectral
properties. HSI measurements can be used to examine the spectral proper-
ties of plants located close to leakage points, enabling leakage rates of un-
derground pipelines to be calculated. An experiment designed by Pan
et al. (2022) to simulate an underground gas pipeline leak and the effects
of gas exposure on different plant cultivars provided an index model for
monitoring plant health. This paper presented the variational mode decom-
position index (VMDI), which employs two bands at 616 and 829 nm, that
have a high correlation with gas stress. In comparison to other indices, the
proposed indexwas able to detect stressed wheat and grass faster andmore
efficiently for identifying stressed vegetation during the growing season. In
previous research of this research group (Jiang et al., 2020; Ran et al.,
2020), it has been found that the combination of spectral and spatial infor-
mation can enhance detection performance in comparison to the use of
spectral features alone.

Plant morphology and physiological characteristics are negatively af-
fected by elevated CO2 (eCO2) concentrations. Liu et al. (2021a) investi-
gated the effects of different eCO2 concentrations on winter wheat and
key spectral characteristics to develop prediction models based on leaf
area index (LAI) and soil and plant analysis development (SPAD), which
are significant contributors to plant growth. In situ experiments were con-
ducted using chambers to determine the phonological properties of winter
wheat and their hyperspectral characteristics. LAI and SPADwere found to
increase and then decrease during the winter wheat growth cycle. More-
over, the canopy reflectance was similar under different treatments. How-
ever, the level of reflectance varied. The treatment increased the
reflectance of the plants during the heading and milk ripening phases of
the growth cycle while decreasing it during the jointing and flowering
phases.

Accurately estimating yield reduction due to hailstorm is crucial to
determine insurance compensation as well as what farmers should do as a
result of the damage. According to a studymade byWang et al. (2021), sim-
ulation of six hail damage treatments at four levels as well as natural track-
ing experiments were conducted to investigate field-scale yield predictions
based on spectral characteristics. Different machine learning algorithms,
based on spectral characteristic bands and vegetation indices, were evalu-
ated to predict cotton yield. The model that used spectral reflectance to
predict yields performed much more accurately than the model that used
vegetation indices. Among the models, the PLS one provided the best
performance.

3. Combination of proximal hyperspectral sensing with airborne or
spaceborne imaging

There are different measurement scales depending on the plants and the
stress factors. For example, to determine the status of a large area of vege-
tation, the use of imaging spectrometersmounted onUAV/drone platforms,
airborne vehicles, and satellite platforms should be considered (Lassalle
et al., 2021). Furthermore, proximal measurements of stress have been
used in some studies to calibrate methods for detecting stress in airborne
or satellite-based platforms (Murphy et al., 2020). Platforms based on satel-
lites can providemeasurements of vast areas at once, but data resolution is a
big problem, along with cloud coverage, which greatly affects the informa-
tion gathered. Although proximal sensing provided flexibility in terms of
time, satellite-based sensors can be re-visited on a daily to weekly basis,
which implies that the revisit time for these sensors could impair their effec-
tiveness as they might fail to detect the earliest signs of stress (Li et al.,
2019a). Moreover, some environmental conditions, such as the aftermath
of frost events, are not always suitable for gathering spectral data, resulting
in another limitation of satellite sensors. It is also unclear whether
some stress signals can be detected by satellites with spatial resolutions of
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1-30m (Murphy et al., 2020). In recent years, UAVs equippedwith compact
cameras have become an affordable alternative for imaging landscapes,
providing an opportunity to increase precision agriculture and monitoring
of the environment. In addition to acquiring spectral images of discrete por-
tions of the spectrum, drones can also be equipped with custom sensors as
this knowledge base grows, potentially enabling the detection of abiotic
stresses in their early stages through multispectral imagery. They provide
canopy-scale data with high spatial resolutions (<1 m), but have some lim-
itations regarding payload and flight time. In ground-based measurements,
data can be acquired atfine spatial resolutions andwithout consideration of
sensor size or weight, but sampling is slower and may be affected by envi-
ronmental drift, as occurs in large-scale studies (Liu et al., 2020b).
Obtaining comprehensive information about plant stress over a wide area
with a high level of spatial and spectral resolution is possible through a
multiscale imaging technique that combined proximal hyperspectral sens-
ing with airborne or satellite imagery, from leaf to satellite scale. Addition-
ally, advanced satellite spectrometers, which provide spatially and
spectrally detailed information, are under development and will play an
increasing role in providing accurate information about crops and the envi-
ronment (Lassalle, 2021).

In terms of assessing metal uptake by plants, it would be useful to eval-
uate the environmental risks associated with industrial brownfields and
monitor plants on a large scale. This would be done using proximal reflec-
tance measurements in the field that could be adapted to aerial or satellite
optical imaging. A study of Lassalle et al. (2021) provided an estimate of the
concentration of heavy metals in plant leaves based on hyperspectral mea-
surements in the field to aerial images. The proposed method involves con-
structing leaf-level vegetation indices for different metals, followed by an
evaluation of their relevance to the application at canopy scale and analysis
based on high-resolution aerial imagery. The method can be easily applied
to drones with embedded sensors for accurate mapping of heavy metals on
the ground. In other studies, advances were also made in building models
derived from multi-source remote sensing data, which was based on proxi-
mal hyperspectral and satellite data to monitor heavy metal stress on rice
(Li et al., 2019a) and Quercus spinosa (He et al., 2020) plants.

Using both ground-based and airborne reflectance measurements, a
number of spectral and temperature-based indicators were assessed for
the simultaneous determination of nitrogen and water content in winter
wheat, to minimize potential confounding effects (Pancorbo et al., 2021).
Based on this approach, it may be possible to optimize N fertilization and
irrigation by integrating spectral and thermal information. It is necessary
to monitor leaf water content to detect plants under water stress at an
early stage in crop growth. Since optical data have a limited resolution
and satellite data are impacted by atmospheric conditions, its exact estima-
tion remains difficult. Furthermore, canopy density is low at the beginning
of the growth cycle, which increases the effect of bare soil overshadowing.
To determine leaf water stress early in the growth cycle, Raj et al. (2021)
developed a new method using high resolution hyperspectral drone imag-
ery to assess leaf water stress based on water sensitive indices (Fig. 7). As
well as using handheld and drone hyperspectral technologies for leaf-
level hyperspectral data analysis, leaf samples were taken and oven dried
to determine the water content of the leaves. With portable hyperspectral
leaf level measurements, seven indices were proposed according to their
responses to the different vibrational absorption bands of water. Through
a gradient boost machine (GBM) model, a farm-scale leaf water map was
derived from drone hyperspectral data, based on the minimum/maximum
values set by the indices and days after planting.

The idea of coupling proximal and aerial hyperspectral measurements
with high or very-high spatial resolution has also proven successful in
assessing plant stress from problems such as oil (Lassalle et al., 2019a),
waterlogging (Yang et al., 2022), warming and elevated CO2 levels
(McPartland et al., 2019), natural gas leakage (Du et al., 2022), herbicide
exposure (Mink et al., 2020; Scherrer et al., 2019), and frost (Choudhury
et al., 2019). Currently, there are a limited number of studies combining
proximal and airborne hyperspectral data, but this approach is a step in
the right direction and can open up opportunities for future applications
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in quantitative monitoring of abiotic stresses, particularly with advances
in airborne or spaceborne sensors.

4. Conclusion

The overview provided by this review of recent advances made toward
monitoring abiotic stressors using proximal hyperspectral remote sensing.
This field has evidenced a significant increase in publications in the last
few years, which has resulted in a number of scientific and technological
advances in agricultural and environmental research. In spite of that,
there is much work done on the development of hyperspectral techniques
for long-range remote sensing using satellites or aircraft for canopy param-
eters than proximal sensing techniques. However, remote sensing models
for large areas are not applicable to proximal HSI due to atmospheric con-
ditions affecting long-range imaging, while proximal crop imagery should
incorporate plant morphology, illumination, and leaf characteristics.

The extensive range of emerging applications of the proximal
hyperspectral technologies on the leaf and canopy scales for identification
of abiotic stress, emphasize the critical role that this approach can play
for rapid and nondestructive evaluation of plant characteristics. In terms
of processing techniques, there are numerous models that can be adapted
to proximal hyperspectral data, which can have a substantial impact on
its performance. Furthermore, it would beworthwhile to investigate the po-
tential transferability of proximal sensing outside of its original context
since the majority of the methods employed are focused on a single scale
and are intended to be used on a single plant.

On the other hand, the concept of precision agriculture is based onmon-
itoring stress across a specific crop field, but a large-scale approach over
multiple canopy areas is needed for comprehensive monitoring of the envi-
ronment. Toward this achievement, further plant ecology research aims to
develop methods applicable to complex plant ecosystems containing many
species, by using a spatial analysis with high resolution to investigate their
spectral responses to various stressors within and across species. So, an
ideal approach in the detection and characterization of plant stress might
be to combine proximal and airborne hyperspectral measurements with
high spatial and temporal resolution in order to maximize the overall effi-
ciency of the measurement process. There are promising prospects of prac-
tical implementation of these methods in the near future. Given the rapid
development of sensors and satellite-based imaging technologies,
hyperspectral sensing will likely play a greater role in agricultural and envi-
ronmental monitoring in the near future.
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